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1 Review of linear smoothers

• Given samples (xi, yi), i = 1, . . . n, recall that a linear smoother is an estimator for the under-
lying regression function satisfying

r̂(x0) =

n∑
j=1

w(x0, xj) · yj ,

at an arbitrary point x0. We can alternatively express this as

r̂(x0) = w(x0)T y,

where w(x0) = (w(x0, x1), w(x0, x2), . . . w(x0, xn)) ∈ Rn

• This means that the fitted value at the point xi, ŷi = r̂(xi), can be expressed as

ŷi = w(xi)
T y,

and we can write the vector of fitted values ŷ = (ŷ1, . . . ŷn) as

ŷ = Sy,

for the matrix S ∈ Rn×n with ith row w(xi) (i.e., with Sij = w(xi, xj))

• We’ve seen that, e.g., linear regression, k-nearest neighbors regression, kernel regression, and
smoothing splines are all linear smoothers. Important note: the latter three estimators are
linear smoothers at any fixed value of their tuning parameters (k, h, and λ, respectively).
Hence, e.g., if you want to think about smoothing splines as your linear smoother of choice,
then just consider the smoothing parameter λ to be fixed at some value

2 Review of inference in linear regression

• For a particular type of linear smoother, namely, linear regression, we have a well-developed
theory for statistical inference

• Suppose now that xi ∈ Rp, i = 1, . . . n, and let x be the predictor matrix of dimension n × p
(i.e., with ith row xi). Define the usual regression coefficients β̂ = (xTx)−1xT y. Then the
fitted value at an arbitrary point x0 ∈ Rp is

ŷx0
= xT0 β̂ = xT0 (xTx)−1xT y.

Note that here w(x0) = x(xTx)−1x0, and

ŷ = Hy = x(xTx)−1xT y
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• We’ll review inference for the fitted values ŷx0 = xT0 β̂. (As you learned, inference for the
coefficients β̂ is also possible, but we’ll focus on the fitted values because this is what is
relevant for the general setting of regression function prediction.) Assume that we observe

yi = βTxi + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . n,

where xi, i = 1, . . . n are considered fixed

2.1 Pointwise confidence intervals for the regression function

• Note that, at an arbitrary point x0,

Var(ŷx0
) = Var

(
w(x0)T y

)
= w(x0)T Var(y)w(x0)

= σ2w(x0)Tw(x0)

= σ2xT0 (xTx)−1x0

• Typically we must estimate σ2 because it is unknown, and we use the residual sum of squares
from the regression fit, as in

σ̂2 =

∑n
i=1(yi − ŷi)2

n− p
We know that (n− p)σ̂2/σ2 ∼ χ2

n−p

• This yields the estimated variance of ŷx0

ŝ2(ŷx0
) = σ̂2xT0 (xTx)−1x0,

and therefore
ŷx0
− βTx0
ŝ(ŷx0

)
∼ tn−p,

where tn−p denotes a t distribution with n− p degrees of freedom. To get a (1−α) confidence
interval for the true value of the regression function r(x0) = βTx0, hence, we use that

1− α = P
(
q1 ≤

ŷx0
− βTx0
ŝ(ŷx0

)
≤ q2

)
= P

(
ŷx0
− q2ŝ(ŷx0

) ≤ βTx0 ≤ ŷx0
− q1ŝ(ŷx0

)
)
,

where q1, q2 are the α/2 and (1− α/2) quantiles of tn−p, respectively

• I.e., [ŷx0 − q2ŝ(ŷx0), ŷx0 − q1ŝ(ŷx0)] is a (1 − α) confidence interval for r(x0) = βTx0. This is
referred to as a pointwise confidence interval (emphasizing the fact that it guarantees coverage
for the regression function at a single point x0)

• Often, we’ll want to construct a confidence interval for the underlying regression function over
the observed input points, r(xi) = βTxi, i = 1, . . . n. From the above, we know that the
ith such confidence interval is given by [ŷi − q2ŝ(ŷi), ŷi − q1ŝ(ŷi)]. Note that the (estimated)
variance of ŷi is here

ŝ2(ŷi) = σ̂2xTi (xTx)−1xi.

Another way of looking at things, in matrix notation:

Var(ŷ) = Var(Hy) = σ2HHT = σ2H,

and therefore Var(ŷi) = σ2Hii, and the estimated variance is ŝ2(ŷi) = σ̂2Hii
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2.2 Significance tests between fitted models

• We can also test for significance between two fitted nested regression models. Let M1 ⊆M2 ⊆
{1, . . . p} be two nested sets, with sizes p1 = |M1| and p2 = |M2|. Let ŷ(1) denote the vector of
fitted values from the regression on variables in M1, and ŷ(2) from the regression on variables
in M2. Define

RSS1 =

n∑
i=1

(yi − ŷ(1)i )2, RSS2 =

n∑
i=1

(yi − ŷ(2)i )2,

the residual sum of squares from these two regressions. Then

(RSS1 − RSS2)/(p2 − p1)

RSS2/(n− p2)

is the F statistic for testing the significance of variables in M2 \M1, i.e., for testing the null
hypothesis

H0 : βi = 0 for all i ∈M2 \M1,

versus the alternative
H1 : βi 6= 0 for some i ∈M2 \M1.

Under the null hypothesis, we have

(RSS1 − RSS2)/(p2 − p1)

RSS2/(n− p2)
∼ Fp2−p1,n−p2 ,

where Fp2−p1,n−p2
denotes an F distribution with (p2 − p1, n− p2) degrees of freedom. Hence

the test rejects for values of the statistic that exceed q, the (1− α) quantile of Fp2−p1,n−p2

3 Inference with linear smoothers

3.1 Setup, the bootstrap, fixed versus random inputs

• Now we will learn the analogs of the above tools—pointwise confidence intervals, and F tests
between fitted models—for general linear smoothers, beyond linear regression. Like the linear
regression case, we will assume a model

yi = r(xi) + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . n,

where xi, i = 1, . . . n are considered fixed. Because our estimator r̂ is a linear smoother, we
can write the fit as r̂(x0) = w(x0)T y at an arbitrary point x0, and ŷ = Sy for the vector of
fitted values across x1, . . . xn

• To preface, there are certainly other ways to construct confidence intervals and significance
tests than the “direct” ones we describe below. For example, we have already learned how to
use the bootstrap in detail, and the bootstrap could be applied for both of these purposes.
But the direct tools are more computationally efficient, have a close tie to those from linear
regression, and are already implemented in R software, so they’re worth knowing

• When mixing and matching tools, one thing to be aware of is the underlying assumption on
the inputs x1, . . . xn. The tools that we will describe below, just like those for linear regression,
assume that these inputs are fixed. The standard pairs bootstrap, on the other hand, treats
the inputs as random (since we resample pairs (xi, yi)). To use the boostrap and respect the
fixed input setup, we’d have to use the residual bootstrap
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• This is not to say that one route is generally less correct than the other, but rather, that these
differences should be kept in mind when comparing the results produced by different tools.
E.g., if we are comparing a pointwise confidence interval from linear regression, constructed
via standard the methodology in the last section, to another one from a different estimator,
constructed using the pairs bootstrap, we should be aware of the fact that these two tools
are not actually considering the same level of randomness. (We would expect confidence
intervals that are constructed in a random input setting to be generally wider, because they
also incorporate the variability in x1, . . . xn)

3.2 Pointwise confidence intervals for the regression function

• Just as in the linear regression case, at an arbitrary point x0, the variance of the fit r̂(x0) =
w(x0)T y is

Var
(
r̂(x0)

)
= σ2w(x0)Tw(x0)

• How to estimate σ2? We can now use the estimate

σ̂2 =

∑n
i=1(yi − ŷi)2

n− d
,

where d = df(ŷ) = tr(S), the degrees of freedom of the fit ŷ. Note: this replaces p in the usual
expression for the estimated error variance in linear regression, so it should make intuitive
sense to you from what you know about degrees of freedom. Now, (n− d)σ̂2/σ2 ∼ χ2

n−d, but
this is only an approximation in the case of general linear smoothers, and not exact like it was
for linear regression. It is a good approximation nonetheless

• This yields the estimated variance of r̂(x0)

ŝ2
(
r̂(x0)

)
= σ̂2w(x0)Tw(x0),

and from the same arguments as before, an approximate (1− α) confidence interval for r(x0),
the underlying regression function at a point x0, is [r̂(x0) − q2ŝ(r̂(x0)), r̂(x0) − q1ŝ(r̂(x0))],
where q1, q2 are the α/2, (1− α/2) quantiles of tn−d, respectively

• For confidence intervals of the regression function at the observed inputs xi, i = 1, . . . n, the
same story holds; an approximate confidence interval for r(xi) is [ŷi − q2ŝ(ŷi)), ŷi − q1ŝ(ŷi))].
Now

ŝ2(ŷi) = σ̂2w(xi)
Tw(xi),

or another way of writing this is to use the fact that

Var(ŷ) = Var(Sy) = σ2SST ,

so Var(ŷi) = σ2(SST )ii, and the estimated variance is ŝ2(ŷi) = σ̂2(SST )ii

3.3 Learning to love the bias

• It is important to take a step back and think about the bias. Note that the confidence intervals
in the last section utilize the tn−d distribution for the calculation of quantiles q1, q2. As in the
linear regression case, this stems from claiming that

r̂(x0)− r(x0)

ŝ(r̂(x0))
∼ tn−d. (1)
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Remember that this is now an approximate result, because the denominator is only approxi-
mately χ2

n−d (times constant factors). But there is something else going on too: in modeling
this statistic as tn−d, we are assuming that its numerator has mean zero, i.e.,

E[r̂(x0)] = r(x0),

or at least approximately so. Note that this is the same as saying that r̂(x0) has zero bias or
at least small bias. When this is true, i.e., when the bias is small, then we are more or less
justified in saying that (2) holds, so that our confidence interval provides appropriate coverage
for r(x0)

• But when this is not true, i.e., when r̂(x0) is badly biased, then we nevertheless have that

r̂(x0)− E[r̂(x0)]

ŝ(r̂(x0))
∼ tn−d, (2)

(or again, at least approximately so) and therefore the confidence interval that we construct
[r̂(x0)−q2ŝ(r̂(x0)), r̂(x0)−q1ŝ(r̂(x0))] is actually a confidence interval for E[r̂(x0)], rather than
r(x0). So what is E[r̂(x0)]? Well

E[r̂(x0)] = w(x0)T r(x0),

which is a smoothed version of r(x0). In terms of the fitted values ŷ = (ŷ1, . . . ŷn), we have

E[ŷ] = Sr,

where r is the vector of true regression function evaluations r = (r(x1), . . . r(xn)), and again
we can think of E[ŷ] as a smoothed version of the true regression function values

• Hence, in the presence of nonnegligible bias, we have to keep it in mind that our confidence
intervals are really for E[r̂(x0)] or E[ŷi], which are smoothed versions of the true regression
function values r(x0) and r(xi), and not the true values themselves

3.4 Significance tests between fitted models

• Here we present an analog of the F test in linear regression. Suppose that we are comparing
two estimates r̂1 and r̂2, and the model class for r̂1 is nested within that of r̂2. Write

ŷ(1) = S1y, ŷ(2) = S2y,

for the fitted values from r̂1 and r̂2 respectively,

d1 = tr(S1), d2 = tr(S2),

for their respective degrees of freedom, and also

RSS1 =

n∑
i=1

(yi − ŷ(1)i )2, RSS2 =

n∑
i=1

(yi − ŷ(2)i )2,

for their respective residual sums of squares

• A standard example is when r̂1 is a linear fit and r̂2 is a more flexible fit coming from (say) a
smoothing spline. Expressing the true regression function as r(x) = β0 + β1x+ δ(x), we wish
to test the null hypothesis

H0 : δ(x) = 0

versus the alternative hypothesis
H1 : δ(x) 6= 0
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• In general, we must assume that ŷ
(2)
i = r̂2(xi) is approximately unbiased for r(xi), i = 1, . . . n,

and that ŷ
(1)
i = r̂1(xi) is approximately unbiased for r(xi), i = 1, . . . n under the null hypoth-

esis. Then the F statistic for testing the significance of the fit ŷ(2) over ŷ(1) is

(RSS1 − RSS2)/(d2 − d1)

RSS2/(n− d2)
,

and the null hypothesis, it holds that, approximately,

(RSS1 − RSS2)/(d2 − d1)

RSS2/(n− d2)
∼ Fd2−d1,n−d2 .

As before, we reject when this statistic exceeds q, the (1− α) quantile of Fd2−d1,n−d2

3.5 Additive models

• With additive models fit by backfitting, using linear smoothers, everything follows similarly.
Suppose now that each xi = (xi1, . . . xip) ∈ Rp, i = 1, . . . n and we fit the additive model

r̂(xi) = r̂1(xi1) + . . .+ r̂p(xip).

Then we can write the vector of fitted values ŷ = (r̂(x1), . . . r̂(xn)) as

ŷ = ŷ(1) + . . .+ ŷ(p),

where ŷ(j) = (r̂j(x1j), . . . r̂j(xnj)), for each j = 1, . . . p

• Recall that backfitting cycles through performing univariate smoothing on each dimension,
one at a time. Suppose that the linear smoother for dimension j has corresponding smoothing
matrix Sj (i.e., this matrix is constructed over the points x1j , . . . xnj). The backfitting updates
can then be written as

ŷ(1) ← S1

(
y −

∑
j 6=1

y(j)
)

ŷ(2) ← S2

(
y −

∑
j 6=2

y(j)
)

. . .

ŷ(n) ← Sn

(
y −

∑
j 6=n

y(j)
)
,

and at convergence, these are all equalities

• This means that there exists linear transformations R1, . . . Rp such that the fitted components
satisfy

ŷ(j) = Rjy, j = 1, . . . p.

These fitted values evidently just come from linear smoothers (defined by R1, . . . Rp), and so
we can construct estimates of their variance, confidence intervals, and perform F tests just
like in the univariate case
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