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1 Classification

1.1 Introduction to classification

• Classification, like regression, is a predictive task, but one in which the outcome takes only
values across discrete categories; classification problems are very common (arguably just as or
perhaps even more common than regression problems!)

• Examples:

– Predicting whether a patient will develop breast cancer or remain healthy, given genetic
information

– Predicting whether or not a user will like a new product, based on user covariates and a
history of his/her previous ratings

– Predicting the region of Italy in which a brand of olive oil was made, based on its chemical
composition

– Predicting the next elected president, based on various social, political, and historical
measurements

• Classification is fundamentally a different problem than regression, and so, we will need dif-
ferent tools. In this lecture we will learn one of the most common tools: logistic regression.
You should know that there are many, many more methods beyond this one (just like there
are many methods for estimating the regression function)

1.2 Why not just use least squares?

• Before we present logistic regression, we address the (reasonable) question: why not just use
least squares?

• Consider a classification problem in which we are given samples (xi, yi), i = 1, . . . n, and as
usual xi ∈ Rp denotes predictor measurements, and yi discrete outcomes. In this classification
problem, we will assume that yi can take two values, which we will write (without a loss of
generality) as 0 and 1. Then, to predict a future outcome Y from predictor measurement
X, we might consider performing linear regression. I.e., we fit coefficients β̂ according to the
familiar criterion

min
β∈Rp

n∑
i=1

(yi − βTxi)2,

and to predict the class of Y from X, we round β̂TX to whichever class is closest, 0 or 1

• What is the problem with this, if any? For purely predictive purposes, this actually is not a
crazy idea—it tends to give decent predictions. But there are two drawbacks:
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1. We cannot use any of the well-established routines for statistical inference with least
squares (e.g., confidence intervals, etc.), because these are based on a model in which the
outcome is continuously distributed. At an even more basic level, it is hard to precisely
interpret β̂

2. We cannot use this method when the number of classes exceeds 2. If we were to simply
code the response as 1, . . .K for a number of classes K > 2, then the ordering here would
be arbitrary—but it actually matters1

2 Logistic regression

2.1 The logistic model

• Throughout this section we will assume that the outcome has two classes, for simplicity. (We
return to the general K class setup at the end.) Logistic regression starts with different model
setup than linear regression: instead of modeling Y as a function of X directly, we model the
probability that Y is equal to class 1, given X. First, abbreviate p(X) = P(Y = 1|X). Then
the logistic model is

p(X) =
exp(βTX)

1 + exp(βTX)
(1)

The function on the right-hand side above is called the sigmoid of βTX. What does it look
like for βTX large positive? For βTX negative? Plot it to gather some intuition (i.e., plot
ea/(1 + ea) as a function of a)

• Rearranged, the equation (1) says that

log
( p(X)

1− p(X)

)
= βTX. (2)

The left-hand side above is called the log odds or logit of p(X), and is written as logit p(X). In
general, logit(a) = log(a/(1− a))

• Note that assuming (1) (or equivalently, (2)), is a modeling decision, just like it is a modeling
decision to use linear regression

• Also note that, to include an intercept term of the form β0 + βTX, we just append a 1 to the
vector X of predictors, as we do in linear regression

2.2 Interpreting coefficients

• How can we interpret the role of the coefficients β = (β1, . . . βp) ∈ Rp in (1) (i.e., in (2))? One
nice feature of the logistic model is that it comes equipped with a useful interpretation for
these coefficients

• Write
p(X)

1− p(X)
= eβ

TX = eβ1X1+...+βpXp .

The left-hand side above is the odds of class 1 (conditional on X). We can see that increasing
Xj by one unit, while keeping all other predictors fixed, multiplies the odds by eβj . This is
because

eβ1X1+...+βj(Xj+1)+...+βpXp = eβ1X1+...+βjXj+...+βpXp · eβj

1You might think we could get around this by modeling one class versus the rest with a binary coding, and
performing K separate regressions, then using the strongest prediction at the end, given an input X. This is flawed
too, however, as we would likely encounter a problem called masking. With this problem, there is some class j that
never ends up being predicted in favor of the others, regardless of the input
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• Equivalently, write

log
( p(X)

1− p(X)

)
= βTX = β1X1 + . . .+ βpXp.

Now increasing Xj by one unit, and keeping all other predictors fixed, changes the log odds
by βj

• It will help to get comfortable with the concept of odds, and log odds, if you haven’t done so
already in another class. Note that probabilities q close to 0 or 1 have odds q/(1− q) close to
0 or ∞, respectively. And probabilities q close to 0 or 1 have log odds log(q/(1− q)) close to
−∞ or ∞, respectively

2.3 Maximum likelihood estimation

• Given samples (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n, we let p(xi) = P(yi = 1|xi), and assume

log
( p(xi)

1− p(xi)

)
= βTxi, i = 1, . . . n

• To construct an estimate β̂ of the coefficients, we will use the principle of maximum likelihood.
I.e., assuming independence of the samples, the likelihood (conditional on xi, i = 1, . . . n) is

L(β) =
∏

i : yi=1

p(xi) ·
∏

i : yi=0

(
1− p(xi)

)
=

n∏
i=1

p(xi)
yi
(
1− p(xi)

)1−yi
.

We will choose β̂ to maximize this likelihood criterion

• Note that maximizing a function is the same as maximizing the log of a function (because log
is monotone increasing). Therefore β̂ is equivalently chosen to maximize the log likelihood

`(β) =

n∑
i=1

yi log p(xi) + (1− yi) log
(
1− p(xi)

)
.

It helps to rearrange this as

`(β) =

n∑
i=1

yi
[

log p(xi)− log
(
1− p(xi)

)]
+ log

(
1− p(xi)

)
=

n∑
i=1

yi log
( p(xi)

1− p(xi)

)
+ log

(
1− p(xi)

)
.

Finally, plugging in for log(p(xi)/(1− p(xi))) = xTi β and using 1− p(xi) = 1/(1 + exp(xTi β)),
i = 1, . . . n,

`(β) =

n∑
i=1

yi(x
T
i β)− log

(
1 + exp(xTi β)

)
. (3)

You can see that, unlike the least squares criterion for regression, this criterion `(β) does not
have a closed-form expression for its maximizer (e.g., try taking its partial derivatives and
setting them equal to zero). Hence we have to run an optimization algorithm to find β̂
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• Somewhat remarkably, we can maximize (3) by running repeated weighted least squares re-
gressions! For those of you who have learned a little bit of optimization, this is actually just
an instantiation of Newton’s method. Applied to the criterion (3), we refer to it as iteratively
reweighted least squares or IRLS

• In short: estimation of β̂ in logistic regression is more involved than it is in linear regression,
but it is possible to do so by iteratively using linear regression software

2.4 Decision boundary

• Suppose that we have formed the estimate β̂ of the logistic coefficients, as discussed in the last
section. To predict the outcome of a new input x ∈ Rp, we form

p̂(x) =
exp(β̂Tx)

1 + exp(β̂Tx)
,

and then predict the associated class according

f̂(x) =

{
0 p̂(x) ≤ 0.5

1 p̂(x) > 0.5

• Equivalently, we can study the log odds

logit p̂(x) = β̂Tx,

and predict the associated class using

f̂(x) =

{
0 β̂Tx ≤ 0

1 β̂Tx > 0

• The set of all x ∈ Rp such that

β̂Tx = β̂1x1 + . . .+ β̂pxp = 0

is called the decision boundary between classes 0 and 1. On either side of this boundary, we
would predict one class or the other

• Remembering the intercept, we would rewrite the decision boundary as

β̂0 + β̂1x1 + . . .+ β̂pxp = 0. (4)

This is a point when p = 1, it is a line when p = 2, and in general it is a (p− 1)-dimensional
subspace. We would therefore say that logistic regression has a linear decision boundary; this
is because the equation (4) is linear in x

2.5 Inference

• A lot of the standard machinery for inference in linear regression carries over to logistic regres-
sion. Recall that we can solve for the logistic regression coefficients β̂ by performing repeated
weighted linear regressions; hence we can simply think of the logistic regession estimates β̂ as
the result of a single weighted linear regression—the last one in this sequence (upon conver-
gence). Confidence intervals for β̂j , j = 1, . . . p, and so forth, are then all obtained from this
weighted linear regression perspective. We will not go into detail here, but such inferential
tools are implemented in software, and it helps to be aware of where they come from
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2.6 Multinomial regression

• With more than two classes, the story is similar. Now we use an extension of the logistic model
called the multinomial model, which, given K classes for the outcome Y , takes the form

P(Y = 1|X) =
exp(βT1 X)

1 +
∑K−1
j=1 exp(βTj X)

P(Y = 2|X) =
exp(βT2 X)

1 +
∑K−1
j=1 exp(βTj X)

...

P(Y = K − 1|X) =
exp(βTK−1X)

1 +
∑K−1
j=1 exp(βTj X)

P(Y = K|X) =
1

1 +
∑K−1
j=1 exp(βTj X)

• Equivalently, we can write this in log odds form as

log
( P(Y = 1|X)

P(Y = K|X)

)
= βT1 X

log
( P(Y = 2|X)

P(Y = K|X)

)
= βT2 X

log
(P(Y = K − 1|X)

P(Y = K|X)

)
= βTK−1X

• The interpretation of coefficients is similar to before: increasing X` by one unit and keeping
all other predictors fixed, βj` pertains to the change in log(P(Y = j|X)/P(Y = K − 1|X))

• Estimation proceeds by maximum likelihood, as before; inference is again drawn from treating
the estimates as the result of a single weighted linear regression

• Finally, predictions are made at an input x by forming

p̂1(x) =
exp(β̂T1 x)

1 +
∑K−1
j=1 exp(β̂Tj x)

p̂2(x) =
exp(β̂T2 x)

1 +
∑K−1
j=1 exp(β̂Tj x)

...

p̂K−1(x) =
exp(β̂TK−1x)

1 +
∑K−1
j=1 exp(β̂Tj x)

p̂K(x) =
1

1 +
∑K−1
j=1 exp(β̂Tj x)

,

and then predicting the class according to

f̂(x) = argmax
j=1,...K

p̂j(x)
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