
Other Dimension Reduction Techniques

Advanced Methods for Data Analysis (36-402/36-608)

Spring 2014

1 Classical multidimensional scaling

1.1 PCA and SVD

• Recall that last time we learned principal component analysis (PCA) applied to a data matrix
X ∈ Rn×p with rows x1, . . . xn ∈ Rp. (We always center the columns of X before the analysis,
and typically also scale them to have sample variance 1.) This can be summarized with the
singular value decomposition (SVD) of X:

X = U D V T

n× p n× p p× p p× p

• Here D = diag(d1, . . . dp) is diagonal with d1 ≥ . . . ≥ dp ≥ 0, and U, V both have orthonormal
columns. Recall that:

– the columns of V , v1, . . . vp ∈ Rp, are the principal component directions

– the columns of U , u1, . . . up ∈ Rn, are the normalized principal component scores

– the jth diagonal element of D squared and divided by n, d2j/n, is the variance explained
by vj

• Computing XV = UDV TV = UD tells us that Xvj = djuj for every j = 1, . . . p, as expected
(since this is how we defined the normalized principal component scores). Therefore, to perform
dimension reduction, we choose some k < p, and define

Z = XVk =
[
Xv1 Xv2 . . . Xvk

]
=
[
d1u1 d2u2 . . . dkuk

]
= UkDk, (1)

where Vk ∈ Rp×k, Uk ∈ Rn×k are the first k columns of U, V and Dk ∈ Rk×k is the first k
diagonal elements of D. Hence Z ∈ Rn×k, and the rows of Z, call them z1, . . . zn ∈ Rk, give
us a new lower-dimensional representation for the data points x1, . . . xn ∈ Rp

1.2 PCA from inner products only

• Here’s a question that will get us started thinking about dimension reduction in a different
way: could we recover the low-dimension representation Z defined above, if we were only given
the inner products XXT ∈ Rn×n, rather than the data points themselves X ∈ Rn×p? Note
that the (i, j) element of XXT is

(XXT )ij = xT
i xj ,

where xi and xj are the ith and jth data points (rows of X)

1



• The answer: yes! Looking at (1), we see that the lower-dimensional representation can be
expressed as Z = UkDk. But from the SVD of X,

XXT = UDV TV DUT = UD2UT ,

because V TV = I. The above is called an eigendecomposition of XTX, i.e., d21, . . . d
2
p are the

eigenvalues of XXT and u1, . . . up are corresponding eigenvectors. So, what we’ve learned: we
can compute the top k eigenvalues and eigenvectors of XXT , and then form the product

Z = UkDk =
[
u1 u2 . . . uk

] 
d1

d2
. . .

dk

 ,

which gives us the desired low-dimensional representation

1.3 PCA from distances only

• Let’s push it even further: suppose that we were only given a pairwise distance matrix ∆ ∈
Rn×n, whose (i, j) element is defined by

∆ij = ‖xi − xj‖2.

I.e., we are only given the distances between pairs of points x1, . . . xn ∈ Rp and not the points
themselves (nor knowledge of their ambient dimension p). Could we still recover the lower-
dimension representation Z defined above?

• This seems even more ambitious, but remarkably, the answer is still: yes! The trick is to
recover the inner product matrix B = XXT from ∆, and then apply the arguments explained
in the last section to compute Z. This total procedure is called (classical) multidimensional
scaling, and for completeness, its steps are:

1. Recover the inner product matrix B = XXT from ∆

2. Compute an eigendecomposition B = UD2UT , and form Z = UkDk where Uk contains
the top k eigenvectors and Dk the (square roots) of the top k eigenvalues

• Step 2 should be clear from the last section. But how would we perform Step 1? It turns out
that by letting

Aij = −∆2
ij , i, j = 1, . . . n,

and then double centering A—i.e., centering both the rows and columns of A—we can recover
the inner product matrix B = XXT . (The order of centering doesn’t matter, i.e., we can
center the rows first, or the columns first)

• In summary, the low-dimensional representation Z that we would usually obtain from PCA
on X can also be obtained from the pairwise distances ∆, and the algorithm for this is called
multidimensional scaling

2 Custom distances and Isomap

• The multidimensional scaling algorithm from the last section takes as an input a pairwise
distance matrix ∆ ∈ Rn×n, computed over some data points x1, . . . xn, and produces a low-
dimensional representation z1, . . . zn ∈ Rk for some k. The default (classic) choice is to define
∆ij = ‖xi − xj‖2, the Euclidean distance between points xi, xj ∈ Rp. But really, we could
pass any measure of distances ∆ij = d(xi, xj) to the multidimensional scaling algorithm, and
see what comes out for the low-dimensional representation Z

2



• Note that by using a novel distance or metric ∆ij = d(xi, dj), we don’t just get the same prin-
cipal component scores representation out of multidimensional scaling, but we get a different,
novel low-dimensional representation

• Why would we want to do this? Well, using Euclidean distance ∆ij = ‖xi − xj‖2 assumes
that the most appropriate way to measure the distance between xi and xj , in the context of
our data sample x1, . . . xn, is with a straight line. But in some cases, the straight-line distance
between xi and xj is not may not be an ideal reflection of their discrepancy, in the context of
the problem; the idea is that by defining a more appropriate distance measure, we can achieve
a more appropriate low-dimensional representation through multidimensional scaling

• There are many examples of custom distances that can be appropriately defined in different
problem settings; i.e., if we think of x1, . . . xn as images, or videos, or words, etc., there may
be a different appropriate measure of distance for each of these settings

• Here we describe one general-purpose way of flexibly measuring the distances between points
x1, . . . xn ∈ Rp, called isometric feature mapping or Isomap.1 The basic idea is to construct a
graph G = (V,E), i.e., construct edges E between vertices V = {1, . . . n}, based on the struc-
ture between x1, . . . xn ∈ Rp. Then we define a graph distance ∆ij = dgraph(xi, xj) between xi

and xj , and use multidimensional scaling to compute our low-dimensional representation

(From Tenenbaum et al. (2000))

• Constructing the graph: for each pair i, j, we connect i and j with an edge if either:

– xi is one of xj ’s m nearest neighbors, or

– xj is one of xi’s m nearest neighbors

The weight of this edge e = {i, j} is then we = ‖xi − xj‖2

• Defining graph distances: now that we have built a graph, i.e., we have built an edge set E,
we define the graph distance ∆ij = dgraph(xi, xj) between xi and xj to be the distance of the
shortest path in our graph from i to j. This is the minimum sum of edges weights over all
paths P connecting i to j,

dgraph(xi, xj) = min
paths P ⊆ E
from i to j

∑
e∈P

we,

and can be computed by standard graph algorithms from computer science (e.g., Dijkstra’s
algorithm or Floyd’s algorithm)

• Finally we run ∆ through multidimensional scaling to achieve the low dimensional represen-
tation z1, . . . zn ∈ Rk for some chosen number of dimensions k

1Tenenbaum et al. (2000), “A global geometric framework for nonlinear dimensionality reduction”

3



• Isomap works well when the sample points x1, . . . xn lie close to what is known as a smooth
manifold of Rp; you can think of this as just a lower dimensional subspace of Rp that has
been smoothly deformed. For lots of neat examples, see the referenced Isomap paper or
http://isomap.stanford.edu

3 Local linear embedding

• Local linear embedding2 is a similar method in spirit but its details are quite different. It
doesn’t rely on multidimensional scaling at all. The basic idea has two steps:

1. Learn a bunch of local approximations to the structure between x1, . . . xn ∈ Rp

2. Learn a low-dimensional representation z1, . . . zn ∈ Rk whose structure best matches these
local approximations

• What is meant by such local approximations? We simply try to predict each xi by a linear
function of nearby points xj (hence the name “local linear” embedding). In particular, for
each xi ∈ Rp, we first find its m nearest neighbors, and collect their indices as N (i). Then we
build a weight vector wi ∈ Rn, setting wij = 0 for j /∈ N (i) and fitting wij for j ∈ N (i) by
minimizing ∥∥∥xi −

∑
j∈N (i)

wijxj

∥∥∥2
2

• Using the weights w1, . . . wn ∈ Rn, we fit the low-dimensional representation z1, . . . zn ∈ Rk,
by minimizing

n∑
i=1

∥∥∥zi − n∑
j=1

wijzj

∥∥∥2
2

(From Roweis et al. (2000))

• For several neat examples, see the referenced paper

2Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding”

4


