1

1.1

Other Dimension Reduction Techniques

Advanced Methods for Data Analysis (36-402/36-608)
Spring 2014

Classical multidimensional scaling

PCA and SVD

e Recall that last time we learned principal component analysis (PCA) applied to a data matrix

1.2

X € R"*P with rows z1,...x, € RP. (We always center the columns of X before the analysis,
and typically also scale them to have sample variance 1.) This can be summarized with the
singular value decomposition (SVD) of X:

X = U D VT
nxp nXp pXp DPXDPp

Here D = diag(dy,...d,) is diagonal with dy > ... > d, > 0, and U,V both have orthonormal
columns. Recall that:

— the columns of V', v1,...v, € RP, are the principal component directions

— the columns of U, uq,...u, € R", are the normalized principal component scores

— the jth diagonal element of D squared and divided by n, d? /n, is the variance explained

by v;

Computing XV = UDVTV = UD tells us that Xvj =dju; for every j =1,...p, as expected
(since this is how we defined the normalized principal component scores). Therefore, to perform
dimension reduction, we choose some k < p, and define

ZZXVk = [X’U1 X'UQ ‘X'U]c] = [d1U1 d2u2 dkuk } = Uka, (1)

where Vj, € RP** U, € R"** are the first & columns of U,V and D, € RF** is the first k
diagonal elements of D. Hence Z € R™**, and the rows of Z, call them zi, ...z, € R*, give
us a new lower-dimensional representation for the data points z1,...x, € RP

PCA from inner products only

Here’s a question that will get us started thinking about dimension reduction in a different
way: could we recover the low-dimension representation Z defined above, if we were only given
the inner products X X7 € R™X", rather than the data points themselves X € R"*P? Note
that the (i,) element of X X7 is

(XXT)y; = i 2y,

where z; and z; are the ith and jth data points (rows of X)

e The answer: yes! Looking at (1), we see that the lower-dimensional representation can be

1.3

expressed as Z = UpDy. But from the SVD of X,
XxT =vupv'vpuT =UD*U7,

because VIV = I. The above is called an eigendecomposition of XT X ie., di,...d2 are the
eigenvalues of X X7 and uy, ... u, are corresponding eigenvectors. So, what we’ve learned: we
can compute the top k eigenvalues and eigenvectors of X X7, and then form the product

dy
Z:Uka:[ul U2 ... uk} d2 N

which gives us the desired low-dimensional representation

PCA from distances only

Let’s push it even further: suppose that we were only given a pairwise distance matrix A €
R™ " whose (i,) element is defined by

Aij = ||@; — Isz-

Le., we are only given the distances between pairs of points x1,...x, € RP and not the points
themselves (nor knowledge of their ambient dimension p). Could we still recover the lower-
dimension representation Z defined above?

This seems even more ambitious, but remarkably, the answer is still: yes! The trick is to
recover the inner product matrix B = X X7 from A, and then apply the arguments explained
in the last section to compute Z. This total procedure is called (classical) multidimensional
scaling, and for completeness, its steps are:

1. Recover the inner product matrix B = X X7 from A

2. Compute an eigendecomposition B = UD?U”, and form Z = U, D), where U, contains
the top k eigenvectors and Dy, the (square roots) of the top k eigenvalues

Step 2 should be clear from the last section. But how would we perform Step 17 It turns out
that by letting
Aij = —A7

i Li=1...n
and then double centering A—i.e., centering both the rows and columns of A—we can recover
the inner product matrix B = XX7. (The order of centering doesn’t matter, i.e., we can

center the rows first, or the columns first)

In summary, the low-dimensional representation Z that we would usually obtain from PCA
on X can also be obtained from the pairwise distances A, and the algorithm for this is called
multidimensional scaling

Custom distances and Isomap

The multidimensional scaling algorithm from the last section takes as an input a pairwise
distance matrix A € R™*™ computed over some data points x1,...z,, and produces a low-
dimensional representation 21, ...z, € R¥ for some k. The default (classic) choice is to define
A;j = ||z; — z;||2, the Euclidean distance between points z;,z; € RP. But really, we could
pass any measure of distances A;; = d(z;, ;) to the multidimensional scaling algorithm, and
see what comes out for the low-dimensional representation Z

Note that by using a novel distance or metric A;; = d(x;, d;), we don’t just get the same prin-
cipal component scores representation out of multidimensional scaling, but we get a different,
novel low-dimensional representation

Why would we want to do this? Well, using Euclidean distance A;; = |lz; — ;|| assumes
that the most appropriate way to measure the distance between z; and x;, in the context of
our data sample x1,...x,, is with a straight line. But in some cases, the straight-line distance
between z; and z; is not may not be an ideal reflection of their discrepancy, in the context of
the problem; the idea is that by defining a more appropriate distance measure, we can achieve
a more appropriate low-dimensional representation through multidimensional scaling

There are many examples of custom distances that can be appropriately defined in different
problem settings; i.e., if we think of z1,...x, as images, or videos, or words, etc., there may
be a different appropriate measure of distance for each of these settings

Here we describe one general-purpose way of flexibly measuring the distances between points
xq,...7, € RP, called isometric feature mapping or Isomap.! The basic idea is to construct a
graph G = (V, E), i.e., construct edges E between vertices V' = {1,...n}, based on the struc-
ture between z1, ..., € RP. Then we define a graph distance A;; = d®"*"®(z;, z;) between z;
and z;, and use multidimensional scaling to compute our low-dimensional representation

AT

(From Tenenbaum et al. (2000))

e Constructing the graph: for each pair 4, j, we connect 7 and j with an edge if either:
— x; is one of z;’s m nearest neighbors, or
— x; is one of ;’s m nearest neighbors
The weight of this edge e = {i, j} is then w, = ||z; — z;||2

e Defining graph distances: now that we have built a graph, i.e., we have built an edge set F,
we define the graph distance A;; = d8™P"(z;, z;) between x; and x; to be the distance of the
shortest path in our graph from ¢ to j. This is the minimum sum of edges weights over all
paths P connecting ¢ to j,

d#*PP (z;,25) = min E We,
paths P C FE
from 7 to j eep

and can be computed by standard graph algorithms from computer science (e.g., Dijkstra’s
algorithm or Floyd’s algorithm)

e Finally we run A through multidimensional scaling to achieve the low dimensional represen-
tation 21, ...z, € RF for some chosen number of dimensions k

ITenenbaum et al. (2000), “A global geometric framework for nonlinear dimensionality reduction”

e Isomap works well when the sample points 1, ...z, lie close to what is known as a smooth
manifold of RP; you can think of this as just a lower dimensional subspace of RP that has
been smoothly deformed. For lots of neat examples, see the referenced Isomap paper or
http://isomap.stanford.edu

Local linear embedding

o Local linear embedding® is a similar method in spirit but its details are quite different. It
doesn’t rely on multidimensional scaling at all. The basic idea has two steps:

1. Learn a bunch of local approximations to the structure between x1,...x, € RP

2. Learn a low-dimensional representation z1,...z, € R* whose structure best matches these
local approximations

e What is meant by such local approximations? We simply try to predict each z; by a linear
function of nearby points x; (hence the name “local linear” embedding). In particular, for
each z; € RP, we first find its m nearest neighbors, and collect their indices as N (7). Then we
build a weight vector w; € R", setting w;; = 0 for j ¢ N (i) and fitting w;; for j € N (i) by

minimizing
2
xT; — Wi T
= 3w,
JEN(4)
e Using the weights wy,...w, € R", we fit the low-dimensional representation 2, ...z, € R¥,

by minimizing
n n 2
S-Sl
i=1 j=1

g o @ Select neighbors
[e) - . N

Reconstruct with
linear weights

Map to embedded coordinates

(From Roweis et al. (2000))

e For several neat examples, see the referenced paper

2Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding”

