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1 Unsupervised learning

1.1 Supervised versus unsupervised

• Up until this point, we’ve been working in a setting in which we’ve been given pairs (xi, yi),
i = 1, . . . n, where xi is a vector of predictor measurements, and yi is an associated outcome.
Assuming that (X,Y ) is a new pair from the same joint distribution, we’ve learned how to
predict Y from X in various settings and in various ways; this is called supervised learning

• A related but notably different framework is that of unsupervised learning, where we only
observe measurements xi, i = 1, . . . n (and no outcomes yi, i = 1, . . . n), and the goal is to
discover interesting and lasting structure present in these measurements. We tend to call
xi, i = 1, . . . n feature measurements rather than predictor measurements, since there is no
prediction involved

• Suppose that each xi ∈ Rp. Understanding the relationship between the variables or features
xij , j = 1, . . . p is a core problem in unsupervised learning, and as in supervised learning (e.g.,
consider linear regression, nonparametric regression, classification, generalized linear models),
there are many ways to approach it. For the next few lectures we’ll study dimension reduction
techniques

1.2 Dimension reduction

• Dimension reduction the task of transforming our data set xi ∈ Rp, i = 1, . . . n to a new set
zi ∈ Rk, i = 1, . . . n with less features, i.e., k < p (and often, substantially so). A new feature
can be one of the old features, or it can be a some linear or nonlinear combination of old
features

• Collect the data points xi ∈ Rp, i = 1, . . . n onto the rows of a matrix X ∈ Rn×p; note that
dimension reduction aims to map this potentially “wide” matrix to a “tall” one Z ∈ Rn×k

(with rows zi ∈ Rk, i = 1, . . . n)

• We want this transformation to preserve the main structure that is present in feature space.
It will often be the first step in an analysis, to be followed by, e.g., visualization, clustering
(which we’ll learn shortly), regression, classification

• We’re going to start with linear dimension reduction. This means: looking for straight lines
in the feature space along which the input points xi, i = 1, . . . n exhibit an interesting trend

• In particular, we’re going to interpret “interesting” directions to mean directions of high vari-
ance
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2 Quick review: Euclidean projection

• The dimension reduction technique that we’ll learn is centered around the concept of projection,
so we’ll review this first

• A vector v ∈ Rp with ‖v‖22 = vT v = 1 is said to be a unit vector (or have unit norm)

• The projection of x ∈ Rp onto a unit vector v is (xT v)v. Think of this as c · v, with c = xT v
being the coefficient or “score”

• Now consider a data matrix X ∈ Rn×p, and consider projecting each row xi ∈ Rp onto v. The
entries of

Xv =


xT1 v
xT2 v
. . .
xTnv

 ∈ Rn

are the scores, and the rows of

XvvT =


(xT1 v)vT

(xT2 v)vT

. . .
(xTnv)vT

 ∈ Rn×p

are the projected points

• What happens if we want to project onto more than one vector? This is straightforward under
special cirumstances. Vectors v1, v2 ∈ Rp are called orthogonal if vT1 v2 = 0. More generally,
vectors v1, . . . vk ∈ Rp are orthogonal if vTi vj = 0 for any i 6= j

• Vectors v1, . . . vk ∈ Rp are called orthonormal if they are orthogonal and they are unit vectors

• The projection of x ∈ Rp onto (the space spanned by) orthonormal vectors v1, . . . vk ∈ Rp is∑k
j=1(xT vj)vj . Again, think of this as

∑k
j=1 cj · vj , with the score along the jth vector given

by cj = xT vj

• Now write the collection v1, . . . vk ∈ Rp as a matrix V ∈ Rp×k, where each vj is a column.
Consider a data matrix X ∈ Rn×p, whose rows we want to project onto the columns of V .
Analogous to previous case of a single vector v, the scores are given by XV ∈ Rn×k, with jth
column

Xvj =


xT1 vj
xT2 vj
. . .
xTnvj

 ∈ Rn,

which contains the scores from projecting X onto vj . The projected points are the rows of
XV V T ∈ Rn×p, which can be written as

XV V T =


∑k

j=1(xT1 vj)v
T
j∑k

j=1(xT2 vj)v
T
j

. . .∑k
j=1(xTnvj)v

T
j

 ∈ Rn×p

• Tip: if you can internalize the matrix notation, it will often be easier to remember (and use)
than the componentwise formulas
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3 Principal component analysis

• Principal component analysis (PCA) is an old topic. Because it has been widely studied, you
will hear it being called different things in different fields

• Consider a data matrix X ∈ Rn×p, so that we have n points (row vectors) and p features
(column vectors). We assume that the columns of X have been centered (i.e., for each, we
have subtracted out its sample mean). Note that this will not change the structure that we’re
interested in finding, since our goal is to find directions of high variance—but centering makes
the math much simpler

3.1 First principal component direction and score

• The first principal component direction of X is the unit vector v1 ∈ Rp that maximizes the
sample variance of Xv1 ∈ Rn when compared to all other unit vectors. Because we have
centered X, the sample variance of Xv1 turns out to be simply

1

n

p∑
j=1

(Xv1)2j =
1

n
‖Xv1‖22 =

1

n
v1X

TXv1.

Therefore the first principal component direction v1 can be expressed as

v1 = argmax
‖v‖2=1

vT (XTX)v

• Accordingly, we define the first principal component score as Xv1 ∈ Rn. Note that its compo-
nents are the scores from projecting the rows of X onto v1

• If we let d1 =
√
vT1 (XTX)v1, then the quantity d21/n = 1

nv
T
1 (XTX)v1 is called the amount of

variance explained by v1

• Finally, u1 = (Xv1)/d1 ∈ Rn is sometimes referred to as the normalized first principal compo-
nent score

• In a nutshell: consider projecting the rows of X onto any vector v ∈ Rp, and looking at the
scores from this projection; the first principal component direction v1 is the direction that
makes these scores the most spread out (highest sample variance)

3.2 Subsequent principal component directions and scores

• What happens next? The idea is to successively find orthogonal directions of the highest
variance. Why orthogonal? Because we’ve already explained the variance in X along v1, and
now we want to look at variance in a different direction. Any direction not orthogonal to
v1 would neccessarily have some overlap with v1, i.e., it would create some redundancy in
explaining the variance in X. (Plus, it makes the math easier!)

• Given k−1 principal component directions v1, . . . vk−1 ∈ Rp, orthonormal by construction, we
define the kth principal component direction vk ∈ Rp to be

vk = argmax
‖v‖2=1

vT vj=0, j=1,...k−1

vT (XTX)v

• The vector Xvk ∈ Rn is called the kth principal component score of X
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• Letting dk =
√
vk(XTX)vk, the quantity d2k/n = 1

nv
T
k (XTX)vk is the amount of variance

explained by vk

• Finally, uk = (Xvk)/dk ∈ Rn is the normalized kth principal component score

3.3 Properties and representations

• How many principal component directions/scores are there? There are p, because if v1, . . . vp ∈
Rp are orthonormal, then they are linearly independent1

• For the kth principal component direction vk ∈ Rp, note that the entries of Xvk = dkuk are
the scores from projecting X onto vk, written as

Xvk =


xT1 vk
xT2 vk
. . .
xTnvk

 ∈ Rn

• The directions vk and normalized scores uk are only unique up to sign flips

• Matrix representation: let the columns of V contain the principal component directions,

V =
[
v1 v2 . . . vp

]
∈ Rp×p.

The principal component scores are the columns of XV ,

XV =
[
Xv1 Xv2 . . . Xvp

]
∈ Rn×p.

If you can wrap your head around them, the matrix representations are more concise

4 Practical issues

4.1 PCA for dimension reduction

• As a dimension reduction tool: given data points x1, . . . xn ∈ Rp, we form the data matrix
X ∈ Rn×p, compute the first k principal component directions v1, . . . vk ∈ Rp, and stack these
onto the columns of Vk ∈ Rn×k. Then we define

Z = XVk =
[
Xv1 Xv2 . . . Xvk

]
∈ Rn×k,

the matrix that has the first k principal component scores along its columns. Note that these
k columns represent our new features in the dimension-reduced data set

• In other words, let z1, . . . zn ∈ Rk denote the rows of Z; then these become our dimension-
reduced data points

• Of course, to use this in practice, we’re going to have to choose k, the number of principal
component scores that we take (and the dimension of our new data points)

• How can we do this? Is cross-validation going to work? It seems not, cross-validation doesn’t
really carry over naturally for unsupervised learning

1To be precise, here we are assuming that p ≤ n and rank(X) = p. In general, there are exactly r = rank(X)
principal component directions

4



• Fortunately, we can look at the proportion of variance explained as a function of k. Recall
that the amount of variance explained by a single direction vk was d2k/n = 1

nv
T
k (XTX)vk. We

define the proportion of variance explained by the first k directions v1, . . . vk as

ρk =

∑k
j=1 d

2
j∑p

j=1 d
2
j

.

This is 0 when k = 0 and increases monotically to 1 when k = p. If ρk is high (close to 1) for
a small value of k, then this means that the main structure in X can be explained by a small
number of directions

• Typically we will plot ρk as a function of k to see precisely what’s gained, i.e., to see how
much more variability is captured, by adding principal component directions. After this curve
flattens out, there’s not really any point in utilizing more directions

4.2 Scaling the features

• Recall that we always center the columns of X before computing principal component direc-
tions. Another common pre-processing step is to scale the columns of X, i.e., to divide each
feature by its sample variance, so that each feature in our new X has a sample variance of 1

• Why? Otherwise the sample variance of X along a particular direction v is skewed by the
sample variances of the raw features. E.g., if the first feature (first column) of X had a much,
much larger sample variance than the rest, then the the first principal component direction
will be something close to v1 = (1, 0, . . . 0) ∈ Rp

• Hence, if we are in a setting in which the units of the features are arbitrary, then we scale
before PCA

• But scaling is not always appropriate; e.g., when the variables are all measured in the same
units in the first place (and hence differences in their sample variance are informative!)

4.3 PCA computations

• There are various ways to compute principal component directions of a data matrix X. One
way is via the singular value decomposition (SVD) of X:

X = U D V T

n× p n× p p× p p× p

• Here D = diag(d1, . . . dp) is diagonal with d1 ≥ . . . ≥ dp ≥ 0, and U, V both have orthonormal
columns. This gives us everything:

– the columns of V , v1, . . . vp ∈ Rp, are the principal component directions

– the columns of U , u1, . . . up ∈ Rn, are the normalized principal component scores

– the jth diagonal element of D squared and divided by n, d2j/n, is the variance explained
by vj

• Don’t forget that we must first center the columns of X

• Note that
XV = UDV TV = UD
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because V TV = I. This means that

Xvj = djuj , j = 1, . . . p

showing the two ways of representing the principal component scores, as expected

• Note also that
XTX = V D2V T

and so v1, . . . vp are eigenvectors of XTX. (Check?)

• The last two facts suggest another way of computing the principal component directions and
scores: via an eigendecomposition of XTX
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