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1 Linear regression review

1.1 Model basics and assumptions

• Recall our model building block from last time:

Y = r(X1) + ε,

where E(ε) = 0 and ε is independent of X. The regression function here is r(X1) = E(Y |X1),
or r(x) = E(Y |X1 = x). (We write X1 here to reflect the fact that we just have one predictor,
i.e., X1 ∈ R)

• In linear regression, we predict Y from a linear function of X1, of the form β0 + β1X1. If we
determine β0, β1 by minimizing mean squared error,

MSE(β0, β1) = E[(Y − β0 − β1X1)2],

then recall from last time that

β1 =
Cov(X1, Y )

Var(X1)
, β0 = E(Y )− β1E(X1)

• What happens now with p predictors, X1, . . . Xp? Let’s collect these into a vector predictor
X = (X1, . . . Xp) ∈ Rp. We now want to model Y as a linear function

β0 + β1X1 + . . .+ βpXp = β0 + βTX,

where β = (β1, . . . βp) ∈ Rp is a vector of coefficients. Using mean squared error again as our
criterion,

MSE(β0, β) = E[(Y − β0 − βTX)2],

the optimal coefficients are

β = Var(X)−1Cov(X,Y ), β0 = E(Y )− βTE(X) (1)

Check dimensions: Var(X) is p × p, Cov(X,Y ) is p × 1; β is p × 1, E(X) is p × 1. We’ll call
these the population regression coefficients

• Write down the multivariate model

Y = r(X) + ε.

What are really our assumptions when using linear regression? Recall from your regression
class,
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1. we assume that there is a linear relationship between Y and X, i.e., E(Y |X) = r(X) is
really a linear function of X;

2. we assume that the error ε is normally distributed, with mean zero;

3. we assume that the error ε is independent of X (this implies, e.g., that its variance does
not depend on X).

Briefly, note that we can summarize these four assumptions as

Y |X ∼ N(β0 + βTX,σ2)

• A little later on, we’ll think about the first assumption specifically. Are we really stuck with
assuming that r(X) is linear in X? Another way to think about this is that we’re choosing
to predict Y as a linear function of X, i.e., thinking of this as a modeling decision that (we
hope) will be useful, rather than an assumption about the true underlying relationship. We’ll
see today what happens when we make this choice in various situations

• Why assume normality of the error? Under this assumption, using the least squares criterion
for the sample regression coefficients β̂0, β̂1 is the same as computing the maximum likelihood
estimates

• What about the error being independent of X? To some, this is the most offensive assumption
(depending on which statistician you talk to). We will touch upon this later too, and a bit on
the first homework

1.2 Linear regression estimates from samples

• In practice, we don’t have access to the distributions of X,Y so we can’t actually compute the
population regression coefficients in (1). Instead, we have, say, n independent samples (xi, yi),
i = 1, . . . n from the same distribution. Note, each yi ∈ R and each xi ∈ Rp

• We collect outcomes y = (y1, . . . yn) ∈ Rn into a vector and predictors

x =


xT1
xT2
. . .
xTn

 ∈ Rn×p

onto the rows of a matrix

• We can hence write our linear model as

yi = β0 + βTxi + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . n

Or, more concisely as
y = β01 + xβ + ε, ε ∼ N(0, σ2I)

• We will implicitly just take the first column of x to be the vector of all 1s; this way, we don’t
have to write a separate intercept coefficient, and the model is

y = xβ + ε, ε ∼ N(0, σ2I)

• Under squared error loss,
n∑

i=1

(yi − βTxi)
2 = ‖y − xβ‖22,

the sample regression coefficients (or just regression coefficients or regression estimates) are

β̂ = (xTx)−1xT y
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1.3 Properties of least squares estimates

• Note first that

β̂ = (xTx)−1xT y

= (xTx)−1xT (xβ + ε)

= β + (xTx)−1xT ε

• Unbiasedness: conditional on x,

E(β̂|x) = β + (xTx)−1xTE(ε|x)

= β.

Even unconditionally, E(β̂) = β

• Variance: again, conditional on x,

Var(β̂|x) = Var
(
(xTx)−1xT ε|x

)
= x(xTx)−1Var(ε|x)(xTx)−1xT

= (xTx)−1xTσ2Ix(xTx)−1

= σ2(xTx)−1

2 Breaking assumptions

2.1 Changing slopes

• Look back at the population regression coefficients in (1). Note that the coefficients determin-
ing the slope appear to depend on the distribution of the predictor X, through both terms,
Var(X) and Cov(X,Y ). If the true model is indeed linear, i.e., r(X) = β0 + βTX, then
(obviously) this dependence goes away, as

Var(X)−1Cov(X,Y ) = Var(X)−1Cov(X,βTX + ε)

= Var(X)−1
(
Var(X)β + 0)

= β

But if the true model isn’t linear, i.e., r(X) is not really a linear function of X, then this is
not true, and the the populate slope coefficients depend on the distribution of X

• What does this mean in practice? If we are applying linear regression to a case in which the
truth relationship nonlinear (say by means of approximation), then our coefficient estimates
will depend on exactly which predictor values we observe

• E.g., if Y =
√
X + ε (with ε ∼ N(0, σ2), independent of X), then β = Var(X)−1Cov(X,Y )

and in practice β̂ = (xTx)−1xT y is going to depend highly on the distribution of X, as we’ll
see in the R working examples

2.2 Omitted variables

• What happens if we suppose the linear model

Y = β0 + βTX + ε, (2)
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but in reality the relationship is

Y = β0 + βTX + γTZ + ε̃? (3)

Then in the first model, the error is

ε = γTZ + ε̃,

which need not be independent of X. I.e., even assuming that ε̃ ∼ N(0, σ2) and is properly
independent of X,Z, if Z depends on X, then ε also depends on X

• This is a problem of omitted variables in the regression, and while sometimes overlooked, can
be a big issue. This is because, in practice, there are essentially always omitted variables, and
we would be fooling ourselves if we believed we had actually gotten all of the relevant variables
in our staged regression

• When is it OK to omit a variable Z from the model (2)? If Z is normally distributed with
mean zero, and is independent of X, then ε = γTZ + ε̃ is also normally distributed with mean
zero, and independent of X. Hence (2) is perfectly justified

• If Z has mean zero and is independent of X, then our strictest set of model assumptions may
not met with (2) (no Gaussianity), but relatively speaking, using (2) isn’t terribly offensive

• Examples show that even little correlations between X and Z can lead to big differences when
fitting the regression model (2); in the R working examples we’ll see that changing Cor(X,Z)
from 0.1 to −0.1 can cause a jump in the coefficients in (2)

2.3 Variable transformations

• Imagine our model is Y = log(X) + ε. To use linear regression, we could either transform Y ,
as in regress Ỹ = exp(Y ) on X, or transform X, as in regress Y on X̃ = log(X)

• Which is better? Often it is a better idea to transform the predictors ... why?

1. Transforming the outcome messes with the error model, i.e., the model for Ỹ = exp(Y )
is

Ỹ = X · exp(ε),

which is a multiplicative error model, not additive

2. For a situation like Y = log(X) + Z1/3 + ε, it’s not at all obvious how to transform Y ,
but it is easy to transform the predictor variables (different transformations for X and
Z)

3. Transforming the predictors generalizes to more complex models with richer fits

• On the third point, think about assuming model of the form

Y =

n∑
i=m

cifi(X) + ε.

If we take fi(X) = Xi, then we get back linear regression. But this encapsulates a lot more
than just linear regression; e.g., we could include interaction terms via fi(X) = XjXk, we
could include polynomial terms via fi(X) = Xk

i , and so on. Two basic strategies: first, fix
some dictionary of functions f1, . . . fm ahead of time, or second, try to estimate appropriate
ones from data. We’ll see future lectures how to carry out the second approach, and that it
can work quite well
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