
11:53 Thursday 24th January, 2013

Chapter 4

Using Nonparametric
Smoothing in Regression

Having spent long enough running down linear regression, and thought through
evaluating predictive models, it is time to turn to constructive alternatives, which are
(also) based on smoothing.

Recall the basic kind of smoothing we are interested in: we have a response vari-
able Y , some input variables which we bind up into a vector X , and a collection of
data values, (x1, y1), (x2, y2), . . . xn , yn). By “smoothing”, I mean that predictions are
going to be weighted averages of the observed responses in the training data:

br (x) =
nX

i=1
yi w(x, xi , h) (4.1)

Most smoothing methods have a control setting, which here I write h, that de-
termines how much smoothing we do. With k nearest neighbors, for instance, the
weights are 1/k if xi is one of the k-nearest points to x, and w = 0 otherwise, so large
k means that each prediction is an average over many training points. Similarly with
kernel regression, where the degree of smoothing is controlled by the bandwidth h.

Why do we want to do this? How do we pick how much smoothing to do?

4.1 How Much Should We Smooth?
When we smooth very little (h ! 0), then we can match very small, fine-grained or
sharp aspects of the true regression function, if there are such. That is, less smoothing
leads to less bias. At the same time, less smoothing means that each of our predictions
is going to be an average over (in effect) fewer observations, making the prediction
noisier. Smoothing less increases the variance of our estimate. Since

(total error) = (noise)+ (bias)2+ (variance) (4.2)

73

4.2. ADAPTING TO UNKNOWN ROUGHNESS 74

(Eq. 1.26), if we plot the different components of error as a function of h, we typically
get something that looks like Figure 4.1. Because changing the amount of smooth-
ing has opposite effects on the bias and the variance, there is an optimal amount of
smoothing, where we can’t reduce one source of error without increasing the other.
We therefore want to find that optimal amount of smoothing, which is where cross-
validation comes in.

You should note, at this point, that the optimal amount of smoothing depends
on the real regression curve, our smoothing method, and how much data we have.
This is because the variance contribution generally shrinks as we get more data.1 If
we get more data, we go from Figure 4.1 to Figure 4.2. The minimum of the over-all
error curve has shifted to the left, and we should smooth less.

Strictly speaking, parameters are properties of the data-generating process alone,
so the optimal amount of smoothing is not really a parameter. If you do think of it as
a parameter, you have the problem of why the “true” value changes as you get more
data. It’s better thought of as a setting or control variable in the smoothing method,
to be adjusted as convenient.

4.2 Adapting to Unknown Roughness
Consider Figure 4.3, which graphs two functions, f and g . Both are “smooth” func-
tions in the qualitative, mathematical sense2. We could Taylor-expand both functions
to approximate their values anywhere, just from knowing enough derivatives at one
point x0.3 Alternately, if instead of knowing the derivatives at x0, we have the values
of the functions at a sequence of points x1, x2, . . . xn , we could use interpolation to fill
out the rest of the curve. Quantitatively, however, f (x) is less smooth than g (x) —
it changes much more rapidly, with many reversals of direction. For the same degree
of inaccuracy in the interpolation f (·) needs more, and more closely spaced, training
points xi than goes g (·).

Now suppose that we don’t get to actually get to see f (x) and g (x), but rather
just f (x) + ✏ and g (x) + ⌘, where ✏ and ⌘ are noise. (To keep things simple I’ll
assume they’re the usual mean-zero, constant-variance, IID Gaussian noises, say with
� = 0.15.) The data now look something like Figure 4.4. Can we now recover the
curves?

As remarked in Chapter 1, if we had multiple measurements at the same x, then
we could recover the expectation value by averaging: since the regression function
r (x) = E[Y |X = x], if we had many observations all with xi = x, the average of the
corresponding yi would (by the law of large numbers) converge on r (x). Generally,
however, we have at most one measurement per value of x, so simple averaging won’t
work. Even if we just confine ourselves to the xi where we have observations, the
mean-squared error will always be �2, the noise variance. However, our estimate
would be unbiased.

1Sometimes bias changes as well. Noise does not (why?).
2They are “C1”: they’re not only continuous, but their derivatives exist and are continuous to all

orders.
3Technically, a function whose Taylor series converges everywhere is analytic.

11:53 Thursday 24th January, 2013

75 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(10*x),add=TRUE)

Figure 4.1: Over-all generalization error for different amounts of smoothing (solid
curve) decomposed into process noise (dotted line), approximation error introduced
by smoothing (=squared bias; dashed curve), and estimation variance (dot-and-dash
curve). The numerical values here are arbitrary, but the functional forms (squared
bias/ h4, variance/ n�1h�1) are representative of typical results for non-parametric
smoothing.

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 76

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE,col="grey")
curve(0.12+2*x^2+1/(10*x),add=TRUE,col="grey")
curve(1/(30*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(30*x),add=TRUE)

Figure 4.2: Consequences of adding more data to the components of error: noise
(dotted) and bias (dashed) are unchanged, but the new variance curve (dotted and
dashed, black) is to the left of the old (greyed), so the new over-all error curve (solid
black) is lower, and has its minimum at a smaller amount of smoothing than the old
(solid grey).

11:53 Thursday 24th January, 2013

77 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0
.0

0
.5

1
.0

x

f(
x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.4

0
.8

1
.2

x

g
(x
)

par(mfcol=c(2,1))
curve(sin(x)*cos(20*x),from=0,to=3,xlab="x",ylab=expression(f(x)))
curve(log(x+1),from=0,to=3,xlab="x",ylab=expression(g(x)))

Figure 4.3: Two curves for the running example. Above, f (x); below, g (x). (As it
happens, f (x) = sin x cos20x, and g (x) = log x + 1, but that doesn’t really matter.)

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 78

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x = runif(300,0,3)
yf = sin(x)*cos(20*x)+rnorm(length(x),0,0.15)
yg = log(x+1)+rnorm(length(x),0,0.15)
par(mfcol=c(2,1))
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta))
curve(log(x+1),col="grey",add=TRUE)

Figure 4.4: The same two curves as before, but corrupted by IID Gaussian noise
with mean zero and standard deviation 0.15. (The x values are the same, but there
are different noise realizations for the two curves.) The light grey line shows the
noiseless curves.

11:53 Thursday 24th January, 2013

79 4.2. ADAPTING TO UNKNOWN ROUGHNESS

What smoothing methods try to use is that we may have multiple measurements
at points xi which are near the point of interest x. If the regression function is
smooth, as we’re assuming it is, r (xi)will be close to r (x). Remember that the mean-
squared error is the sum of bias (squared) and variance. Averaging values at xi 6= x is
going to introduce bias, but averaging many independent terms together also reduces
variance. If by smoothing we get rid of more variance than we gain bias, we come
out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order Taylor
expansion (Figure 4.5), so

r (xi)⇡ r (x)+ (xi � x)r 0(x) (4.3)

and
yi ⇡ r (x)+ (xi � x)r 0(x)+ ✏i (4.4)

Now we average: to keep the notation simple, abbreviate the weight w(xi , x, h) by
just wi .

br (x) = 1
n

nX
i=1

yi wi (4.5)

=
1
n

nX
i=1
(r (x)+ (xi � x)r 0(x)+ ✏i)wi (4.6)

= r (x)+
nX

i=1
wi✏i + r 0(x)

nX
i=1

wi (xi � x) (4.7)

br (x)� r (x) =
nX

i=1
wi✏i + r 0(x)

nX
i=1

wi (xi � x) (4.8)

E
î
(br (x)� r (x))2

ó
= �2

nX
i=1

w2
i +E

2
64

r 0(x)
nX

i=1
wi (xi � x)

!2
3
75 (4.9)

(Remember that:
P

wi = 1; E
⇥
✏i
⇤
= 0; the noise is uncorrelated with everything;

and E
⇥
✏i
⇤
= �2.)

The first term on the final right-hand side is an estimation variance, which will
tend to shrink as n grows. (If wi = 1/n, the unweighted averaging case, we get back
the familiar �2/n.) The second term, expectation, on the other hand, is bias, which
grows as xi gets further from x, and as the magnitudes of the derivatives grow, i.e.,
how smooth or wiggly the regression function is. For this to work, wi had better
shrink as xi � x and r 0(x) grow.4 Finally, all else being equal, wi should also shrink
with n, so that the over-all size of the sum shrinks as we get more data.

To illustrate, let’s try to estimate f (1.6) and g (1.6) from the noisy observations.
We’ll try a simple approach, just averaging all values of f (xi) + ✏i and g (xi) + ⌘i

4The higher derivatives of r also matter, since we should really be keeping more than just the first term
in the Taylor expansion. The details get messy, but Eq. 4.12 below gives the upshot for kernel smoothing
in particular.

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 80

Figure 4.5: Sound advice when stuck on almost any problem in statistical theory.

11:53 Thursday 24th January, 2013

81 4.2. ADAPTING TO UNKNOWN ROUGHNESS

for 1.5 < xi < 1.7 with equal weights. For f , this gives 0.46, while f (1.6) = 0.89.
For g , this gives 0.98, with g (1.6) = 0.95. (See figure 4.6). The same size window
introduces a much larger bias with the rougher, more rapidly changing f than with
the smoother, more slowly changing g . Varying the size of the averaging window
will change the amount of error, and it will change it in different ways for the two
functions.

If one does a more careful second-order Taylor expansion like that leading to Eq.
4.9, specifically for kernel regression, one can show that the bias at x is

E
⇥

r̂ (x)� r (x)|X1 = x1, . . .Xn = xn
⇤
= h2

ñ
1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô
�2

K+o(h2) (4.10)

where f is the density of x, and �2
K =

R
u2K(u)d u, the variance of the probability

density corresponding to the kernel5. The r 00 term just comes from the second-order
part of the Taylor expansion. To see where the r 0 f 0 term comes from, imagine first
that x is a mode of the distribution, so f 0(x) = 0. As h shrinks, only training points
where Xi is very close to x will have any weight in r̂ (x), and their distribution will
be roughly symmetric around x (at least once h is sufficiently small). So, at mode,
E
⇥

w(Xi , x, h)(Xi � x) r̂ (x)
⇤ ⇡ 0. Away from a mode, there will tend to be more

training points on one side or the other of x, depending on the sign of f 0(x), and this
induces a bias. The tricky part of the analysis is concluding that the bias has exactly
the form given above.6

One can also work out the variance of the kernel regression estimate,

Var
⇥

r̂ (x)|X1 = x1, . . .Xn = xn
⇤
=
�2(x)R(K)

nh f (x)
+ o((nh)�1) (4.11)

where R(K) =
R

K2(u)d u. Roughly speaking, the width of the region where the
kernel puts non-trivial weight is about h, so there will be about nh f (x) training
points available to estimate r̂ (x). Each of these has a yi value, equal to r (x) plus
noise of variance �2(x). The final factor of R(K) accounts for the average weight.

Putting the bias together with the variance, we get an expression for the mean
squared error of the kernel regression at x:

M SE(x) = �2(x)+h4
ñ

1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô2

(�2
K)

2+
�2(x)R(K)

nh f (x)
+o(h4)+o(1/nh)

(4.12)
Eq. 4.12 tells us that, in principle, there is a single optimal choice of bandwidth h, an
optimal degree of smoothing. We could find it by taking Eq. 4.12, differentiating with

5If you are not familiar with the “order” symbols O and o, now would be a good time to read Appendix
B.

6Exercise 1 shows how to do a bit of the demonstration for the special case of the uniform (boxcar)
kernel.

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 82

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε *

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

*

par(mfcol=c(2,1))
colors=ifelse((x<1.7)&(x>1.5),"black","grey")
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon),col=colors)
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
points(1.6,mean(yf[(x<1.7)&(x>1.5)]),pch="*",cex=2)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta),col=colors)
curve(log(x+1),col="grey",add=TRUE)
points(1.6,mean(yg[(x<1.7)&(x>1.5)]),pch="*",cex=2)

Figure 4.6: Relationship between smoothing and function roughness. In both the
upper and lower panel we are trying to estimate the value of the regression function
at x = 1.6 from averaging observations taken with 1.5< xi < 1.7 (black points, others
are “ghosted” in grey). The location of the average in shown by the large black X .
Averaging over this window works poorly for the rough function f (x) in the upper
panel (the bias is large), but much better for the smoother function in the lower panel
(the bias is small).

11:53 Thursday 24th January, 2013

83 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Radius of averaging window

A
bs

ol
ut

e
va

lu
e

of
 e

rr
or

loc_ave_err <- function(h,y,y0) {abs(y0-mean(y[(1.6-h < x) & (1.6+h>x)]))}
yf0=sin(1.6)*cos(20*1.6)
yg0=log(1+1.6)
f.LAE = sapply(0:100/100,loc_ave_err,y=yf,y0=yf0)
g.LAE = sapply(0:100/100,loc_ave_err,y=yg,y0=yg0)
plot(0:100/100,f.LAE,xlab="Radius of averaging window",

ylab="Absolute value of error",type="l")
lines(0:100/100,g.LAE,lty=2)
abline(h=0.15,col="grey")

Figure 4.7: Estimating f (1.6) and g (1.6) from averaging observed values at 1.6� h <
x < 1.6+ h, for different radii h. Solid line: error of estimates of f (1.6); dashed line:
error of estimates of g (1.6); grey line: � , the standard deviation of the noise.

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 84

respect to the bandwidth, and setting everything to zero (neglecting the o terms):

0 = 4h3
ñ

1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô2

(�2
K)

2� �
2(x)R(K)
nh2 f (x)

(4.13)

h =

0
BB@n

4 f (x)(�2
K)

2
h

1
2 r 00(x)+ r 0(x) f 0(x)

f (x)

i2

�2(x)R(K)

1
CCA

�1/5

(4.14)

Of course, this expression for the optimal h involves the unknown derivatives r 0(x)
and r 00(x), plus the unknown density f (x) and its unknown derivative f 0(x). But
if we knew the derivative of the regression function, we would basically know the
function itself (just integrate), so we seem to be in a vicious circle, where we need to
know the function before we can learn it.7

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivatives, or (to cut to the chase) the
optimal bandwidth hopt. Since most of us do not have access to such oracles, we

need to estimate hopt. Once we have this estimate, bh, then we get out weights and
our predictions, and so a certain mean-squared error. Basically, our MSE will be the
Oracle’s MSE, plus an extra term which depends on how far bh is to hopt, and how
sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our actual
MSE, using bh, approaches the Oracle’s MSE, which it gets from hopt. This would
mean that, in effect, we are figuring out how rough the underlying regression function
is, and so how much smoothing to do, rather than having to guess or be told. An
adaptive procedure, if we can find one, is a partial8 substitute for prior knowledge.

4.2.1 Bandwidth Selection by Cross-Validation
The most straight-forward way to pick a bandwidth, and one which generally man-
ages to be adaptive, is in fact cross-validation; k-fold CV is usually somewhat better
than leave-one-out, but the latter often works acceptably too. The usual procedure is
to come up with an initial grid of candidate bandwidths, and then use cross-validation
to estimate how well each one of them would generalize. The one with the lowest
error under cross-validation is then used to fit the regression curve to the whole data9.

Code Example 2 shows how it would work in R, with the values of the input
variable being in the vector x (one dimensional) and the response in the vector y

7You may be wondering, at this point, why I keep talking about the optimal bandwidth, when it would
seem, from Eq. 4.14, that the bandwidth should vary with x. One can actually go through pretty much the
same sort of analysis in terms of the expected values of the derivatives, and the qualitative conclusions will
be the same, but the notational overhead is even worse. Alternatively, there are techniques for variable-
bandwidth smoothing.

8Only partial, because we’d always do better if the Oracle would just tell us hopt.
9Since the optimal bandwidth is / n�1/5, and the training sets in cross-validation are smaller than the

whole data set, one might adjust the bandwidth proportionally. However, if n is small enough that this
makes a big difference, the sheer noise in bandwidth estimation usually overwhelms this.

11:53 Thursday 24th January, 2013

85 4.2. ADAPTING TO UNKNOWN ROUGHNESS

(also one dimensional), using the npreg function from the np library (Hayfield and
Racine, 2008).10

The return value has three parts. The first is the actual best bandwidth. The
second is a vector which gives the cross-validated mean-squared mean-squared errors
of all the different bandwidths in the vector bandwidths. The third component is an
array which gives the MSE for each bandwidth on each fold. It can be useful to know
things like whether the difference between the CV score of the best bandwidth and
the runner-up is bigger than their fold-to-fold variability.

Figure 4.8 plots the CV estimate of the (root) mean-squared error versus band-
width for our two curves. Figure 4.9 shows the data, the actual regression functions
and the estimated curves with the CV-selected bandwidths. This illustrates why pick-
ing the bandwidth by cross-validation works: the curve of CV error against band-
width is actually a pretty good approximation to the true curve of generalization
error against bandwidth (which would look like Figure 4.1), and so optimizing over
the CV curve is close to optimizing over the generalization error curve. If we had
a problem where cross-validation didn’t give good estimates of generalization error,
this wouldn’t work.

Notice, by the way, in Figure 4.8, that the rougher curve is more sensitive to the
choice of bandwidth, and that the smoother curve always has a lower mean-squared
error. Also notice that, at the minimum, one of the cross-validation estimates of
generalization error is smaller than the true system noise level; this shows that cross-
validation doesn’t completely correct for optimism11.

We still need to come up with an initial set of candidate bandwidths. For reasons
which will drop out of the math in Chapter 15, it’s often reasonable to start around
1.06sX /n1/5, where sX is the sample standard deviation of X . However, it is hard to
be very precise about this, and good results often require some honest trial and error.

4.2.2 Convergence of Kernel Smoothing and Bandwidth Scaling
Go back to Eq. 4.12 for the mean squared error of kernel regression. As we said, it in-
volves some unknown constants, but we can bury them inside big-O order symbols,
which also absorb the little-o remainder terms:

M SE(h) = �2(x)+O(h4)+O(1/nh) (4.15)

The �2(x) term is going to be there no matter what, so let’s look at the excess risk
over and above the intrinsic noise:

M SE(h)��2(x) =O(h4)+O(1/nh) (4.16)

That is, the (squared) bias from the kernel’s only approximately getting the curve
is proportional to the fourth power of the bandwidth, but the variance is inversely

10The np package actually has a function, npregbw, which automatically selects bandwidths through a
sophisticated combination of cross-validation and optimization techniques. The default settings for this
function make it very slow, by trying very, very hard to optimize the bandwidth.

11Tibshirani and Tibshirani (2009) gives a fairly straightforward way to adjust the estimate of the gen-
eralization error for the selected model or bandwidth, but that doesn’t influence the choice of the best
bandwidth.

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 86

Cross-validation for univariate kernel regression
cv_bws_npreg <- function(x,y,bandwidths=(1:50)/50,

num.folds=10) {
require(np)
n <- length(x)
stopifnot(n> 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(num.folds > 0, num.folds==trunc(num.folds))

fold_MSEs <- matrix(0,nrow=num.folds,
ncol=length(bandwidths))

colnames(fold_MSEs) = bandwidths

case.folds <- rep(1:num.folds,length.out=n)
case.folds <- sample(case.folds)
for (fold in 1:num.folds) {

train.rows = which(case.folds==fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {

fit <- npreg(txdat=x.train,tydat=y.train,
exdat=x.test,eydat=y.test,bws=bw)

fold_MSEs[fold,paste(bw)] <- fit$MSE
}

}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw=best.bw,

CV_MSEs=CV_MSEs,
fold_MSEs=fold_MSEs))

}

Code Example 2: Comments omitted here to save space; see the accompanying R
file on the class website. The colnames trick: component names have to be character
strings; other data types will be coerced into characters when we assign them to be
names. Later, when we want to refer to a bandwidth column by its name, we wrap
the name in another coercing function, such as paste. — The vector of default band-
widths is arbitrary and only provided for illustration; it should not be blindly copied
and used on data (or on homework problems).

11:53 Thursday 24th January, 2013

87 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwidth

R
oo

t C
V

 M
S

E

fbws <- cv_bws_npreg(x,yf,bandwidths=(1:100)/200)
gbws <- cv_bws_npreg(x,yg,bandwidths=(1:100)/200)
plot(1:100/200,sqrt(fbws$CV_MSEs),xlab="Bandwidth",

ylab="Root CV MSE",type="l",ylim=c(0,0.6))
lines(1:100/200,sqrt(gbws$CV_MSEs),lty=2)
abline(h=0.15,col="grey")

Figure 4.8: Cross-validated estimate of the (root) mean-squard error as a function of
the bandwidth. Solid curve: data from f (x); dashed curve: data from g (x); grey line:
true � . Notice that the rougher curve is more sensitive to the choice of bandwidth,
and that the smoother curve is more predictable at every choice of bandwidth. Also
notice that CV does not completely compensate for the optimism of in-sample fitting
(see where the dashed curve falls below the grey line). CV selects bandwidths of 0.015
for f and 0.165 for g .

11:53 Thursday 24th January, 2013

4.2. ADAPTING TO UNKNOWN ROUGHNESS 88

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x.ord=order(x)

par(mfcol=c(2,1))

plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))

fhat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yf)

lines(x[x.ord],fitted(fhat)[x.ord],lwd=4)

curve(sin(x)*cos(20*x),col="grey",add=TRUE,lwd=2)

plot(x,yg,xlab="x",ylab=expression(g(x)+eta))

ghat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yg)

lines(x[x.ord],fitted(ghat)[x.ord],lwd=4)

curve(log(x+1),col="grey",add=TRUE,lwd=2)

Figure 4.9: Data from the running examples (circles), true regression functions (grey)
and kernel estimates of regression functions with CV-selected bandwidths (black).
The widths of the regression functions are exaggerated. Since the x values aren’t
sorted, we need to put them in order if we want to draw lines connecting the fitted
values; then we need to put the fitted values in the same order. An alternative would
be to use predict on the sorted values, as in the next section.

11:53 Thursday 24th January, 2013

89 4.2. ADAPTING TO UNKNOWN ROUGHNESS

proportional to the product of sample size and bandwidth. If we kept h constant and
just let n !1, we’d get rid of the variance, but we’d be left with the bias. To get
the MSE to go to zero, we need to let the bandwidth h change with n — call it hn .
Specifically, suppose hn ! 0 as n !1, but nhn !1. Then, by Eq. 4.16, the risk
(generalization error) of kernel smoothing is approaching that of the ideal predictor
or regression function.

What is the best bandwidth? We saw in Eq. 4.14 that it is (up to constants)

hopt =O(n�1/5) (4.17)

If we put this bandwidth into Eq. 4.16, we get

M SE(h)��2(x) =O
⇣Ä

n�1/5
ä4⌘
+O

⇣
n�1
Ä

n�1/5
ä�1⌘

=O
Ä

n�4/5
ä
+O

Ä
n�4/5

ä
=O

Ä
n�4/5

ä

(4.18)
That is, the excess prediction error of kernel smoothing over and above the system
noise goes to zero as 1/n0.8. Notice, by the way, that the contributions of bias and
variance to the generalization error are both of the same order, n�0.8.

Is this fast or small? We can compare it to what would happen with a parametric
model, say with parameter ✓. (Think, for instance, of linear regression, but not
only linear regression.) There is an optimal value of the parameter, ✓0, which would
minimize the mean-squared error. At ✓0, the parametric model has MSE

M SE(✓0) = �
2(x)+ b (x,✓0) (4.19)

where b is the bias of the parametric model; this is zero when the parametric model
is true12. Since ✓0 is unknown and must be estimated, one typically has b✓ � ✓0 =
O(1/
p

n). A first-order Taylor expansion of the parametric model contributes an
error O(b✓�✓0), so altogether

M SE(b✓)��2(x) = b (x,✓0)+O(1/n) (4.20)

So parametric models converge more quickly (n�1 goes to zero faster than n�0.8),
but they will typically converge to the wrong answer (b 2 > 0). Kernel smoothing
converges a bit more slowly, but always converges to the right answer13.

How does all this change if h must be found by cross-validation? If we write ‘hCV
for the bandwidth picked by cross-validation, the one can show (Simonoff, 1996, ch.
5) that

‘hCV � hopt

hopt
� 1=O(n�1/10) (4.21)

12When the parametric model is not true, the optimal parameter value ✓0 is often called the pseudo-
truth.

13It is natural to wonder if one couldn’t do better than kernel smoothing’s O(n�4/5)while still having no
asymptotic bias. Resolving this is very difficult, but the answer turns out to be “no” in the following sense
(Wasserman, 2006). Any curve-fitting method which can learn arbitrary smooth regression functions will
have some curves where it cannot converge any faster than O(n�4/5). (In the jargon, that is the minimax
rate.) Methods which converge faster than this for some kinds of curves have to converge more slowly for
others. So this is the best rate we can hope for on truly unknown curves.

11:53 Thursday 24th January, 2013

4.3. KERNEL REGRESSION WITH MULTIPLE INPUTS 90

Given this, one concludes (EXERCISE 2) that the MSE of using ‘hCV is also O(n�4/5).

4.2.3 Summary on Kernel Smoothing
Suppose that X and Y are both one-dimensional, and the true regression function
r (x) = E[Y |X = x] is continuous and has first and second derivatives14. Suppose
that the noise around the true regression function is uncorrelated between different
observations. Then the bias of kernel smoothing, when the kernel has bandwidth h,
is O(h2), and the variance, after n samples, is O(1/nh). The optimal bandwidth is
O(n�1/5), and the excess mean squared error of using this bandwidth is O(n�4/5). If
the bandwidth is selected by cross-validation, the excess risk is still O(n�4/5).

4.3 Kernel Regression with Multiple Inputs
For the most part, when I’ve been writing out kernel regression I have been treating
the input variable x as a scalar. There’s no reason to insist on this, however; it could
equally well be a vector. If we want to enforce that in the notation, say by writing
~x = (x1, x2, . . . xd), then the kernel regression of y on ~x would just be

r̂ (~x) =
nX

i=1
yi

K(~x � ~xi)Pn
j=1 K(~x � ~xj)

(4.22)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.
To make this work, we need kernel functions for vectors. For scalars, I said that

any probability density function would work so long as it had mean zero, and a finite,
strictly positive (not 0 or1) variance. The same conditions carry over: any distribu-
tion over vectors can be used as a multivariate kernel, provided it has mean zero, and
the variance matrix is finite and strictly positive15. In practice, the overwhelmingly
most common and practical choice is to use product kernels16.

A product kernel simply uses a different kernel for each component, and then
multiplies them together:

K(~x � ~xi) =K1(x
1� x1

i)K2(x
2� x2

i) . . .Kd (x
d � xd

i) (4.23)

Now we just need to pick a bandwidth for each kernel, which in general should not
be equal — say ~h = (h1, h2, . . . hd). Instead of having a one-dimensional error curve,
as in Figure 4.1 or 4.2, we will have a d -dimensional error surface, but we can still use
cross-validation to find the vector of bandwidths that generalizes best. We generally
can’t, unfortunately, break the problem up into somehow picking the best bandwidth
for each variable without considering the others. This makes it slower to select good
bandwidths in multivariate problems, but still often feasible.

14Or can be approximated to arbitrarily closely by such functions.
15Remember that for a matrix v to be “strictly positive”, it must be the case that for any vector ~a,

~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling out the case of some
weird direction along which the distribution has zero variance.

16People do sometimes use multivariate Gaussians; we’ll glance at this in Chapter 14.

11:53 Thursday 24th January, 2013

91 4.4. INTERPRETING SMOOTHERS: PLOTS

(We can actually turn the need to select bandwidths together to our advantage. If
one or more of the variables are irrelevant to our prediction given the others, cross-
validation will tend to give them the maximum possible bandwidth, and smooth
away their influence. In Chapter 15, we’ll look at formal tests based on this idea.)

Kernel regression will recover almost any regression function. This is true even
when the true regression function involves lots of interactions among the input vari-
ables, perhaps in complicated forms that would be very hard to express in linear
regression. For instance, Figure 4.10 shows a contour plot of a reasonably compli-
cated regression surface, at least if one were to write it as polynomials in x1 and x2,
which would be the usual approach. Figure 4.12 shows the estimate we get with a
product of Gaussian kernels and only 1000 noisy data points. It’s not perfect, of
course (in particular the estimated contours aren’t as perfectly smooth and round as
the true ones), but the important thing is that we got this without having to know,
and describe in Cartesian coordinates, the type of shape we were looking for. Kernel
smoothing discovered the right general form.

There are limits to these abilities of kernel smoothers; the biggest one is that
they require more and more data as the number of predictor variables increases. We
will see later (Chapter 9) exactly how much data is required, generalizing the kind of
analysis done §4.2.2, and some of the compromises this can force us into.

4.4 Interpreting Smoothers: Plots
In a linear regression without interactions, it is fairly easy to interpret the coefficients.
The expected response changes by �i for a one-unit change in the i th input variable.
The coefficients are also the derivatives of the expected response with respect to the
inputs. And it is easy to draw pictures of how the output changes as the inputs are
varied, though the pictures are somewhat boring (straight lines or planes).

As soon as we introduce interactions, all this becomes harder, even for parametric
regression. If there is an interaction between two components of the input, say x1 and
x2, then we can’t talk about the change in the expected response for a one-unit change
in x1 without saying what x2 is. We might average over x2 values, and we’ll see next
time a reasonable way of doing this, but the flat statement “increasing x1 by one unit
increases the response by �1” is just false, no matter what number we fill in for �1.
Likewise for derivatives; we’ll come back to them next time as well.

What about pictures? If there are only two input variables, then we can make
plots like the wireframes in the previous section, or contour- or level- plots, which
will show the predictions for different combinations of the two variables. But sup-
pose we want to look at one variable at a time? Suppose there are more than two
input variables?

A reasonable way of producing a curve for each input variable is to set all the
others to some “typical” value, such as the mean or the median, and to then plot
the predicted response as a function of the one remaining variable of interest. See
Figure 4.13 for an example of this. Of course, when there are interactions, changing
the values of the other inputs will change the response to the input of interest, so it
may be a good idea to produce a couple of curves, possibly super-imposed (again, see

11:53 Thursday 24th January, 2013

4.4. INTERPRETING SMOOTHERS: PLOTS 92

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.2

0.4

0.6

0.8

x1
x2

y

x1.points <- seq(-3,3,length.out=100)
x2.points <- x1.points
x12grid <- expand.grid(x1=x1.points,x2=x2.points)
y <- matrix(0,nrow=100,ncol=100)
y <- outer(x1.points,x2.points,f)
library(lattice)
wireframe(y~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.10: An example of a regression surface that would be very hard to learn by
piling together interaction terms in a linear regression framework. (Can you guess
what the mystery function f is?) — wireframe is from the graphics library lattice.

11:53 Thursday 24th January, 2013

93 4.4. INTERPRETING SMOOTHERS: PLOTS

-2
-1

0
1

2

-2

-1

0

1
2

0.0

0.2

0.4

0.6

0.8

1.0

x1
x2

y

x1.noise <- runif(1000,min=-3,max=3)
x2.noise <- runif(1000,min=-3,max=3)
y.noise <- f(x1.noise,x2.noise)+rnorm(1000,0,0.05)
noise <- data.frame(y=y.noise,x1=x1.noise,x2=x2.noise)
cloud(z~x*y,data=noise,col="black",scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.11: 1000 data points, randomly sampled from the surface in Figure 4.10, plus
independent Gaussian noise (s.d. = 0.05).

11:53 Thursday 24th January, 2013

4.4. INTERPRETING SMOOTHERS: PLOTS 94

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.0

0.2

0.4

0.6

0.8

x1
x2

y

noise.np <- npreg(y~x1+x2,data=noise)
y.out <- matrix(0,100,100)
y.out <- predict(noise.np,newdata=x12grid)
wireframe(y.out~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.12: Gaussian kernel regression of the points in Figure 4.11. Notice that
the estimated function will make predictions at arbitrary points, not just the places
where there was training data.

11:53 Thursday 24th January, 2013

95 4.5. AVERAGE PREDICTIVE COMPARISONS

Figure 4.13).
If there are three or more input variables, we can look at the interactions of any

two of them, taken together, by fixing the others and making three-dimensional or
contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input is
associated with the response may seem like a disadvantage compared to using linear
regression. Whether it really is a disadvantage depends on whether there really is a
simple story to be told — and, if there isn’t, how big a lie you are prepared to tell in
order to keep your story simple.

4.5 Average Predictive Comparisons
Suppose we have a linear regression model

Y =�1X 1+�2X 2+ ✏ (4.24)

and we want to know how much Y changes, on average, for a one-unit increase in
X 1. The answer, as you know very well, is just �1:

[�1(X
1+ 1)+�2X 2]� [�1X 1+�2X 2] =�1 (4.25)

This is an interpretation of the regression coefficients which you are very used to
giving. But it fails as soon as we have interactions:

Y =�1X 1+�2X 2+�3X 1X 2+ ✏ (4.26)

Now the effect of increasing X 1 by 1 is

[�1(X
1+ 1)+�2X 2+�3(X

1+ 1)X 2]� [�1X 1+�2X 2+�3X 1X 2] =�1+�3X 2

(4.27)
There just isn’t one answer “how much does the response change when X 1 is in-
creased by one unit?”, it depends on the value of X 2. We certainly can’t just answer
“�1”.

We also can’t give just a single answer if there are nonlinearities. Suppose that the
true regression function is this:

Y =
e�X

1+ e�X
+ ✏ (4.28)

which looks like Figure 4.14, setting � = 7 (for luck). Moving x from �4 to �3
increases the response by 7.57⇥ 10�10, but the increase in the response from x =�1
to x = 0 is 0.499. Functions like this are very common in psychology, medicine
(dose-response curves for drugs), biology, etc., and yet we cannot sensibly talk about
the response to a one-unit increase in x. (We will come back to curves which look
like this in Chapter 12.)

More generally, let’s say we are regressing Y on a vector ~X , and want to assess
the impact of one component of the input on Y . To keep the use of subscripts and

11:53 Thursday 24th January, 2013

4.5. AVERAGE PREDICTIVE COMPARISONS 96

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

new.frame <- data.frame(x=seq(-3,3,length.out=300),y=median(y.noise))
plot(new.frame$x,predict(noise.np,newdata=new.frame),

type="l",xlab=expression(x^1),ylab="y",ylim=c(0,1.0))
new.frame$y <- quantile(y.noise,0.25)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=2)
new.frame$y <- quantile(y.noise,0.75)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=3)

Figure 4.13: Predicted mean response as function of the first input coordinate x1 for
the example data, evaluated with the second coordinate x2 set to the median (solid), its
25th percentile (dashed) and its 75th percentile (dotted). Note that the changing shape
of the partial response curve indicates an interaction between the two inputs. Also,
note that the model is able to make predictions at arbitrary coordinates, whether
or not there were any training points there. (It happened that no observation was
exactly at the median, the 25th or the 75th percentile for the second input.)

11:53 Thursday 24th January, 2013

97 4.5. AVERAGE PREDICTIVE COMPARISONS

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

curve(exp(7*x)/(1+exp(7*x)),from=-5,to=5,ylab="y")

Figure 4.14: The function of Eq. 4.28, with �= 7.

superscripts to a minimum, we’ll write ~X = (u, ~V), where u is the coordinate we’re
really interested in. (It doesn’t have to come first, of course.) We would like to know
how much the prediction changes as we change u,

EY |~X = (u (2), ~v)� EY |~X = (u (1), ~v) (4.29)

and the change in the response per unit change in u,

EY |~X = (u (2), ~v)� EY |~X = (u (1), ~v)
u (2)� u (1)

(4.30)

Both of these, but especially the latter, are called the predictive comparison. Note
that both of them, as written, depend on u (1) (the starting value for the variable of
interest), on u (2) (the ending value), and on ~v (the other variables, held fixed during
this comparison). We have just seen that in a linear model without interactions, u (1),
u (2) and ~v all go away and leave us with the regression coefficient on u. In nonlinear
or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can chose our starting point,
ending point and context, and just plug in to Eq. 4.29 or Eq. 4.30. (Take a look again
at problem 6 on Homework 2.) But suppose we do want to boil this down into a
single number for each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to average
4.30 over the data17 More specifically, we have as our average predictive comparison

17Actually, they propose something very slightly more complicated, which takes into account the un-
certainty in our estimate of the regression function. We’ll come back to this in a few lectures when we see
how to quantify uncertainty in complex models.

11:53 Thursday 24th January, 2013

4.6. EXERCISES 98

for u Pn
i=1

Pn
j=1 r̂ (uj , ~vi)� r̂ (ui , ~vj)sign(uj � ui)

(uj � ui)sign(uj � ui)
(4.31)

where i and j run over data points, r̂ is our estimated regression function, and the
sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and =�1 if x < 0. We
use the sign function this way to make sure we are always looking at the consequences
of increasing u.

The average predictive comparison provides a reasonable summary measure of
how one should expect the response to vary as u changes slightly. But, once the
model is nonlinear or allows interactions, it’s just not possible to summarize the
predictive relationship between u and y with a single number, and so the value of Eq.
4.31 is going to depend on the distribution of u (and possible of v), even when the
regression function is unchanged. (See Exercise 3.)

4.6 Exercises
1. Suppose we use a uniform (“boxcar”) kernel extending over the region (�h/2, h/2).

Show that

E[r̂ (0)] = E
ñ

r (X) |� h
2
<X <

h
2

ô
(4.32)

= r (0)+ r 0(0)E
ñ

X |� h
2
<X <

h
2

ô
(4.33)

+
r 00(0)

2
E
ñ

X 2|� h
2
<X <

h
2

ô
+ o(h2)

Show that E
î

X |� h
2 <X < h

2

ó
=O(r 0(0) f 0(0)h2), and that E

î
X 2|� h

2 <X < h
2

ó
=

O(h2). Conclude that the over-all bias is O(h2).

2. Use Eqs. 4.21, 4.17 and 4.16 to show that the excess risk of the kernel smooth-
ing, when the bandwidth is selected by cross-validation, is also O(n�4/5).

3. Generate 1000 data points where X is uniformly distributed between �4 and
4, and Y = e7x/(1+ e7x) + ✏, with ✏ Gaussian and with variance 0.01. Use
non-parametric regression to estimate r̂ (x), and then use Eq. 4.31 to find the
average predictive comparison. Now re-run the simulation with X uniform on
the interval [0,0.5] and re-calculate the average predictive comparison. What
happened?

11:53 Thursday 24th January, 2013

