
13:58 Friday 15th February, 2013

Chapter 9

Additive Models

9.1 Partial Residuals and Back-fitting for Linear Mod-
els

The general form of a linear regression model is

E
î

Y |~X = ~x
ó
=�0+ ~� ·~x =

pX
j=0
� j x j (9.1)

where for j 2 1 : p, the xj are the components of ~x, and x0 is always the constant
1. (Adding this fictitious constant variable lets us handle the intercept just like any
other regression coefficient.)

Suppose we don’t condition on all of ~X but just one component of it, say Xk .
What is the conditional expectation of Y ?

E
⇥

Y |Xk = xk
⇤
= E
î

E
î

Y |X1,X2, . . .Xk , . . .Xp

ó
|Xk = xk

ó
(9.2)

= E

2
64

pX
j=0
� j Xj |Xk = xk

3
75 (9.3)

= �k xk +E

2
64
X
j 6=k

� j Xj |Xk = xk

3
75 (9.4)

where the first line uses the law of total expectation1, and the second line uses Eq.

1As you learned in baby prob., this is the fact that E[Y |X] = E[E[Y |X ,Z] |X] — that we can always
condition on another variable or variables (Z), provided we then average over those extra variables when
we’re done.

193

9.2. ADDITIVE MODELS 194

9.1. Turned around,

�k xk = E
⇥

Y |Xk = xk
⇤�E

2
64
X
j 6=k

� j Xj |Xk = xk

3
75 (9.5)

= E

2
64Y �
0
B@
X
j 6=k

� j Xj

1
CA |Xk = xk

3
75 (9.6)

The expression in the expectation is the k th partial residual — the (total) residual
is the difference between Y and its expectation, the partial residual is the difference
between Y and what we expect it to be ignoring the contribution from Xk . Let’s
introduce a symbol for this, say Y (k).

�k xk = E
î

Y (k)|Xk = xk

ó
(9.7)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that Xk is the only input feature appearing here — if we could somehow get
hold of the partial residuals, then we can find�k by doing a simple regression, rather
than a multiple regression. Of course to get the partial residual we need to know all
the other � j s. . .

This suggests the following estimation scheme for linear models, known as the
Gauss-Seidel algorithm, or more commonly and transparently as back-fitting; the
pseudo-code is in Example 24.

This is an iterative approximation algorithm. Initially, we look at how far each
point is from the global mean, and do a simple regression of those deviations on
the first input variable. This then gives us a better idea of what the regression surface
really is, and we use the deviations from that surface in a simple regression on the next
variable; this should catch relations between Y and X2 that weren’t already caught
by regressing on X1. We then go on to the next variable in turn. At each step,
each coefficient is adjusted to fit in with what we have already guessed about the
other coefficients — that’s why it’s called “back-fitting”. It is not obvious2 that this
converges, but it does, and the fixed point on which it converges is the usual least-
squares estimate of �.

Back-fitting is not usually how we fit linear models any more, because with mod-
ern numerical linear algebra it’s actually faster to just calculate (xT x)�1xT y. But the
cute thing about back-fitting is that it doesn’t actually rely on the model being linear.

9.2 Additive Models
The additive model for regression is

E
î

Y |~X = ~x
ó
= ↵+

pX
j=1

f j (xj) (9.8)

2Unless, I suppose, you’re Gauss.

13:58 Friday 15th February, 2013

195 9.2. ADDITIVE MODELS

Given: n⇥ (p + 1) inputs x (0th column all 1s)
n⇥ 1 responses y
small tolerance � > 0

center y and each column of x
b� j 0 for j 2 1 : p
until (all | b� j � � j | �) {

for k 2 1 : p {
y (k)i = yi �
P

j 6=k
b� j xi j

�k regression coefficient of y (k) on x·kb�k �k
}

}
b�0
Ä

n�1Pn
i=1 yi

ä
�Pp

j=1
b� j n�1Pn

i=1 xi j

Return: (b�0, b�1, . . . b�p)

Code Example 24: Pseudocode for back-fitting linear models. Assume we make at
least one pass through the until loop. Recall from Chapter 1 that centering the data
does not change the � j ; this way the intercept only have to be calculated once, at the
end.

This includes the linear model as a special case, where f j (xj) = � j x j , but it’s clearly
more general, because the f j s can be pretty arbitrary nonlinear functions. The idea
is still that each input feature makes a separate contribution to the response, and
these just add up, but these contributions don’t have to be strictly proportional to
the inputs. We do need to add a restriction to make it identifiable; without loss of
generality, say that E[Y] = ↵ and E

î
f j (Xj)
ó
= 0.3

Additive models keep a lot of the nice properties of linear models, but are more
flexible. One of the nice things about linear models is that they are fairly straightfor-
ward to interpret: if you want to know how the prediction changes as you change xj ,
you just need to know � j . The partial response function f j plays the same role in an
additive model: of course the change in prediction from changing xj will generally
depend on the level xj had before perturbation, but since that’s also true of reality
that’s really a feature rather than a bug. It’s true that a set of plots for f j s takes more
room than a table of � j s, but it’s also nicer to look at, conveys more information,
and imposes fewer systematic distortions on the data.

Now, one of the nice properties which additive models share with linear ones has

3To see why we need to do this, imagine the simple case where p = 2. If we add constants c1 to f1
and c2 to f2, but subtract c1 + c2 from ↵, then nothing observable has changed about the model. This
degeneracy or lack of identifiability is a little like the way collinearity keeps us from defining true slopes
in linear regression. But it’s less harmful than collinearity because we really can fix it by the convention
given above.

13:58 Friday 15th February, 2013

9.2. ADDITIVE MODELS 196

Given: n⇥ p inputs x
n⇥ 1 responses y
small tolerance � > 0
one-dimensional smoother S
b↵ n�1Pn

i=1 yi
bf j 0 for j 2 1 : p
until (all | bf j � gj | �) {

for k 2 1 : p {
y (k)i = yi �
P

j 6=k
bf j (xi j)

gk S (y (k) ⇠ x·k)
gk gk � n�1Pn

i=1 gk (xi k)
bfk gk

}
}
Return: (b↵, bf1, . . . bfp)

Code Example 25: Pseudo-code for back-fitting additive models. Notice the extra
step, as compared to back-fitting linear models, which keeps each partial response
function centered.

to do with the partial residuals. Defining

Y (k) = Y �
0
B@↵+
X
j 6=k

f j (xj)

1
CA (9.9)

a little algebra along the lines of the last section shows that

E
î

Y (k)|Xk = xk

ó
= fk (xk) (9.10)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use back-fitting to estimate additive models. But we have spent a lot of time talking
about how to use smoothers to fit one-dimensional regressions! We could use nearest
neighbors, or splines, or kernels, or local-linear regression, or anything else we feel
like substituting here.

Our new, improved back-fitting algorithm in Example 25. Once again, while it’s
not obvious that this converges, it does converge. Also, the back-fitting procedure
works well with some complications or refinements of the additive model. If we
know the function form of one or another of the f j , we can fit those parametrically
(rather than with the smoother) at the appropriate points in the loop. (This would
be a semiparametric model.) If we think that there is an interaction between xj and
xk , rather than their making separate additive contributions, we can smooth them
together; etc.

13:58 Friday 15th February, 2013

197 9.3. THE CURSE OF DIMENSIONALITY

There are actually two packages standard packages for fitting additive models in
R: gam and mgcv. Both have commands called gam, which fit generalized additive
models — the generalization is to use the additive model for things like the probabil-
ities of categorical responses, rather than the response variable itself. If that sounds
obscure right now, don’t worry — we’ll come back to this in Chapters 12–13 after
we’ve looked at generalized linear models. The last section of this chapter illustrates
using these packages to fit an additive model.

9.3 The Curse of Dimensionality
Before illustrating how additive models work in practice, let’s talk about why we’d
want to use them. So far, we have looked at two extremes for regression models;
additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p + 1) parameters. Its weakness is that the true regression function r is hardly ever
linear, so even with infinite data it will always make systematic mistakes in its predic-
tions — there’s always some approximation bias, bigger or smaller depending on how
non-linear r is. The strength of linear regression is that it converges very quickly as
we get more data. Generally speaking,

M SElinear = �
2+ alinear+O(n�1) (9.11)

where the first term is the intrinsic noise around the true regression function, the
second term is the (squared) approximation bias, and the last term is the estimation
variance. Notice that the rate at which the estimation variance shrinks doesn’t de-
pend on p — factors like that are all absorbed into the big O.4 Other parametric
models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely non-parametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors, etc.
Here the limiting approximation bias is actually zero, at least for any reasonable re-
gression function r . The problem is that they converge more slowly, because we need
to use the data not just to figure out the coefficients of a parametric model, but the
sheer shape of the regression function. We saw in Chapter 4 that the mean-squared
error of kernel regression in one dimension is �2 +O(n�4/5). Splines, k-nearest-
neighbors (with growing k), etc., all attain the same rate. But in p dimensions, this
becomes (Wasserman, 2006, §5.12)

M SEnonpara��2 =O(n�4/(p+4)) (9.12)

There’s no ultimate approximation bias term here. Why does the rate depend on
p? Well, to give a very hand-wavy explanation, think of the smoothing methods,
where br (~x) is an average over yi for ~xi near ~x. In a p dimensional space, the volume
within ✏ of ~x is O(✏p), so to get the same density (points per unit volume) around ~x
takes exponentially more data as p grows. The appearance of the 4s is a little more

4See Appendix B you are not familiar with “big O” notation.

13:58 Friday 15th February, 2013

9.3. THE CURSE OF DIMENSIONALITY 198

mysterious, but can be resolved from an error analysis of the kind we did for kernel
density estimation in Chapter 45.

For p = 1, the non-parametric rate is O(n�4/5), which is of course slower than
O(n�1), but not all that much, and the improved bias usually more than makes up
for it. But as p grows, the non-parametric rate gets slower and slower, and the fully
non-parametric estimate more and more imprecise, yielding the infamous curse of
dimensionality. For p = 100, say, we get a rate of O(n�1/26), which is not very good
at all. Said another way, to get the same precision with p inputs that n data points
gives us with one input takes n(4+p)/5 data points. For p = 100, this is n20.8, which
tells us that matching the error of n = 100 one-dimensional observations requires
O(4⇥ 1041) hundred-dimensional observations.

So completely unstructured non-parametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that
there are just too many possible high-dimensional functions, and seeing only a trillion
points from the function doesn’t pin down its shape very well at all.

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each f j by a simple one-dimensional smoothing, which converges at O(n�4/5), almost
as good as the parametric rate. So overall

M SEadditive��2 = aadditive+O(n�4/5) (9.13)

Since linear models are a sub-class of additive models, aadditive alm. From a purely
predictive point of view, the only time to prefer linear models to additive models is
when n is so small that O(n�4/5)�O(n�1) exceeds this difference in approximation
biases; eventually the additive model will be more accurate.6

5More exactly, remember that in one dimension, the bias of a kernel smoother with bandwidth h is
O(h2), and the variance is O(1/nh), because only samples falling in an interval about h across contribute
to the prediction at any one point, and when h is small, the number of such samples is proportional to
nh. Adding bias squared to variance gives an error of O(h4) +O(1/nh), solving for the best bandwidth
gives hopt =O(n�1/5), and the total error is then O(n�4/5). Suppose for the moment that in p dimensions
we use the same bandwidth along each dimension. (We get the same end result with more work if we
let each dimension have its own bandwidth.) The bias is still O(h2), because the Taylor expansion still
goes through. But now only samples falling into a region of volume O(hd) around x contribute to the
prediction at x, so the variance is O(1/nhd). The best bandwidth is now hopt =O(n�1/(p+4)), yielding an
error of O(n�4/(p+4)) as promised.

6Unless the best additive approximation to r really is linear; then the linear model has no more bias
and better variance.

13:58 Friday 15th February, 2013

199 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

9.4 Example: California House Prices Revisited
As an example, we’ll revisit the housing price data from the homework. This has
both California and Pennsylvania, but it’s hard to visually see patterns with both
states; I’ll do California, and let you replicate this all on Pennsylvania, and even on
the combined data.

Start with getting the data:

housing <- na.omit(read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv"))
calif <- housing[housing$STATEFP==6,]

(How do I know that the STATEFP code of 6 corresponds to California?)
We’ll fit a linear model for the log price, on the thought that it makes some sense

for the factors which raise or lower house values to multiply together, rather than
just adding.

calif.lm <- lm(log(Median_house_value) ~ Median_household_income
+ Mean_househould_income + POPULATION + Total_units + Vacant_units + Owners
+ Median_rooms + Mean_household_size_owners + Mean_household_size_renters
+ LATITUDE + LONGITUDE, data = calif)

This is very fast — about a fifth of a second on my laptop.
Here are the summary statistics7:

> print(summary(calif.lm),signif.stars=FALSE,digits=3)

Call:
lm(formula = log(Median_house_value) ~ Median_household_income +

+ Mean_househould_income + POPULATION + Total_units + Vacant_units +
Owners + Median_rooms + Mean_household_size_owners
+ Mean_household_size_renters + LATITUDE + LONGITUDE, data = calif)

Residuals:
Min 1Q Median 3Q Max

-3.855 -0.153 0.034 0.189 1.214

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.74e+00 5.28e-01 -10.86 < 2e-16
Median_household_income 1.34e-06 4.63e-07 2.90 0.0038
Mean_househould_income 1.07e-05 3.88e-07 27.71 < 2e-16
POPULATION -4.15e-05 5.03e-06 -8.27 < 2e-16
Total_units 8.37e-05 1.55e-05 5.41 6.4e-08
Vacant_units 8.37e-07 2.37e-05 0.04 0.9719
Owners -3.98e-03 3.21e-04 -12.41 < 2e-16

7I have suppressed the usual stars on “significant” regression coefficients, because, as discussed in Chap-
ter 2, those are not, in fact, the most important variables, and I have reined in R’s tendency to use far too
many decimal places.

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 200

predlims <- function(preds,sigma) {
prediction.sd <- sqrt(preds$se.fit^2+sigma^2)
upper <- preds$fit+2*prediction.sd
lower <- preds$fit-2*prediction.sd
lims <- cbind(lower=lower,upper=upper)
return(lims)

}

Code Example 26: Function for calculating quick-and-dirty prediction limits from
a prediction object (preds) containing fitted values and their standard errors, and an
estimate of the over-all noise level. Because those are two (independent) sources of
noise, we need to combine the standard deviations by “adding in quadrature”.

Median_rooms -1.62e-02 8.37e-03 -1.94 0.0525
Mean_household_size_owners 5.60e-02 7.16e-03 7.83 5.8e-15
Mean_household_size_renters -7.47e-02 6.38e-03 -11.71 < 2e-16
LATITUDE -2.14e-01 5.66e-03 -37.76 < 2e-16
LONGITUDE -2.15e-01 5.94e-03 -36.15 < 2e-16

Residual standard error: 0.317 on 7469 degrees of freedom
Multiple R-squared: 0.639,Adjusted R-squared: 0.638
F-statistic: 1.2e+03 on 11 and 7469 DF, p-value: <2e-16

Figure 9.1 plots the predicted prices,±2 standard errors, against the actual prices.
The predictions are not all that accurate — the RMS residual is 0.317 on the log scale
(i.e., 37%), but they do have pretty reasonable coverage; about 96% of actual precise
fall within the prediction limits8

sqrt(mean(residuals(calif.lm)^2))
mean((log(calif$Median_house_value) <= predlims.lm[,"upper"])

& (log(calif$Median_house_value) >= predlims.lm[,"lower"])

On the other hand, the predictions are quite precise, with the median of the calculated
standard errors being 0.011 (i.e., 1.1%). This linear model thinks it knows what’s
going on.

Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically sets the bandwidths using a fast approximation to leave-one-out
CV called generalized cross-validation, or GCV.

8Remember from your linear regression class that there are two kinds of confidence intervals we might
want to use for prediction. One is a confidence interval for the conditional mean at a given value of x; the
other is a confidence interval for the realized values of Y at a given x. Earlier examples (and homework)
have emphasized the former, but since we don’t know the true conditional means here, we need to use
the latter sort of intervals, prediction intervals proper, to evaluate coverage. The predlims function in
Figure 9.1 calculates a rough prediction interval by taking the standard error of the conditional mean,
combining it with the estimated standard deviation, and multiplying by 2. Strictly speaking, we ought to
worry about using a t -distribution rather than a Gaussian here, but with 7469 residual degrees of freedom,
this isn’t going to matter much. (Assuming Gaussian noise is likely to be more of a concern, but this is
only meant to be a rough cut anyway.)

13:58 Friday 15th February, 2013

201 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

preds.lm <- predict(calif.lm,se.fit=TRUE)
predlims.lm <- predlims(preds.lm,sigma=summary(calif.lm)$sigma)
plot(calif$Median_house_value,exp(preds.lm$fit),type="n",

xlab="Actual price ($)",ylab="Predicted ($)", main="Linear model")
segments(calif$Median_house_value,exp(predlims.lm[,"lower"]),

calif$Median_house_value,exp(predlims.lm[,"upper"]), col="grey")
abline(a=0,b=1,lty="dashed")
points(calif$Median_house_value,exp(preds.lm$fit),pch=16,cex=0.1)

Figure 9.1: Actual median house values (horizontal axis) versus those predicted by
the linear model (black dots), plus or minus two predictive standard errors (grey
bars). The dashed line shows where actual and predicted prices would be equal. Here
predict gives both a fitted value for each point, and a standard error for that pre-
diction. (There is no newdata argument in this call to predict, so it defaults to
the training data used to learn calif.lm, which in this case is what we want.) I’ve
exponentiated the predictions so that they’re comparable to the original values (and
because it’s easier to grasp dollars than log-dollars).

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 202

require(mgcv)
system.time(calif.gam <- gam(log(Median_house_value)

~ s(Median_household_income) + s(Mean_househould_income) + s(POPULATION)
+ s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms)
+ s(Mean_household_size_owners) + s(Mean_household_size_renters)
+ s(LATITUDE) + s(LONGITUDE), data=calif))
user system elapsed

5.481 0.441 17.700

(That is, it took almost eighteen seconds in total to run this.) The s() terms in
the gam formula indicate which terms are to be smoothed — if we wanted particular
parametric forms for some variables, we could do that as well. (Unfortunately we
can’t just write MedianHouseValue ⇠ s(.), we have to list all the variables on the
right-hand side.) The smoothing here is done by splines, and there are lots of options
for controlling the splines, if you know what you’re doing.

Figure 9.2 compares the predicted to the actual responses. The RMS error has
improved (0.27 on the log scale, or 30%, with 96% of observations falling with ±2
standard errors of their fitted values), at only a fairly modest cost in the claimed
precision (the RMS standard error of prediction is 0.020, or 2.0%). Figure 9.3 shows
the partial response functions.

It makes little sense to have latitude and longitude make separate additive contri-
butions here; presumably they interact. We can just smooth them together9:

calif.gam2 <- gam(log(Median_house_value)
~ s(Median_household_income) + s(Mean_househould_income) + s(POPULATION)
+ s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms)
+ s(Mean_household_size_owners) + s(Mean_household_size_renters)
+ s(LONGITUDE,LATITUDE), data=calif)

This gives an RMS error of ±0.25 (log-scale) and 96% coverage, with a median stan-
dard error of 0.021, so accuracy is improving (at least in sample), with little loss of
precision.

preds.gam2 <- predict(calif.gam2,se.fit=TRUE)
predlims.gam2 <- predlims(preds.gam2,sigma=sqrt(calif.gam2$sig2))
mean((log(calif$Median_house_value) <= predlims.gam2[,"upper"]) &

(log(calif$Median_house_value) >= predlims.gam2[,"lower"]))

Figures 9.5 and 9.6 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specifically
towards the coast, and even more specifically towards the great coastal cities. In the
contour plot, one sees more clearly an inward bulge of a negative, but not too very
negative, contour line (between -122 and -120 longitude) which embraces Napa, Sacra-
mento, and some related areas, which are comparatively more developed and more
expensive than the rest of central California, and so more expensive than one would
expect based on their distance from the coast and San Francisco.

9If the two variables which interact have very different magnitudes, it’s better to smooth them with a
te() term than an s() term — see help(gam.models) — but here they are comparable.

13:58 Friday 15th February, 2013

203 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

preds.gam <- predict(calif.gam,se.fit=TRUE)
predlims.gam <- predlims(preds.gam,sigma=sqrt(calif.gam$sig2))
plot(calif$Median_house_value,exp(preds.gam$fit),type="n",

xlab="Actual price ($)",ylab="Predicted ($)", main="First additive model")
segments(calif$Median_house_value,exp(predlims.gam[,"lower"]),

calif$Median_house_value,exp(predlims.gam[,"upper"]), col="grey")
abline(a=0,b=1,lty="dashed")
points(calif$Median_house_value,exp(preds.gam$fit),pch=16,cex=0.1)

Figure 9.2: Actual versus predicted prices for the additive model, as in Figure 9.1.
Note that the sig2 attribute of a model returned by gam() is the estimate of the
noise around the regression surface (�2).

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 204

plot(calif.gam,scale=0,se=2,shade=TRUE,pages=1)

Figure 9.3: The estimated partial response functions for the additive model, with a
shaded region showing ±2 standard errors. The tick marks along the horizontal axis
show the observed values of the input variables (a rug plot); note that the error bars
are wider where there are fewer observations. Setting pages=0 (the default) would
produce eight separate plots, with the user prompted to cycle through them. Setting
scale=0 gives each plot its own vertical scale; the default is to force them to share the
same one. Finally, note that here the vertical scales are logarithmic.

13:58 Friday 15th February, 2013

205 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

plot(calif.gam2,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 9.4: Partial response functions and partial residuals for addfit2, as in Figure
9.3. See subsequent figures for the joint smoothing of longitude and latitude, which
here is an illegible mess. See help(plot.gam) for the plotting options used here.

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 206

LONGITUDE

LA
TI
TU
DE

s(LONGITUDE,LATITUDE,28.48)

plot(calif.gam2,select=10,phi=60,pers=TRUE)

Figure 9.5: The result of the joint smoothing of longitude and latitude.

13:58 Friday 15th February, 2013

207 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

s(LONGITUDE,LATITUDE,28.48)

LONGITUDE

LA
TI
TU
D
E

-124 -122 -120 -118 -116 -114

34
36

38
40

42

plot(calif.gam2,select=10,se=FALSE)

Figure 9.6: The result of the joint smoothing of longitude and latitude. Setting
se=TRUE, the default, adds standard errors for the contour lines in multiple colors.
Again, note that these are log units.

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 208

graymapper <- function(z, x=calif$LONGITUDE,y=calif$LATITUDE, n.levels=10,
breaks=NULL,break.by="length",legend.loc="topright",digits=3,...) {
my.greys = grey(((n.levels-1):0)/n.levels)
if (!is.null(breaks)) {

stopifnot(length(breaks) == (n.levels+1))
}
else {

if(identical(break.by,"length")) {
breaks = seq(from=min(z),to=max(z),length.out=n.levels+1)

} else {
breaks = quantile(z,probs=seq(0,1,length.out=n.levels+1))

}
}
z = cut(z,breaks,include.lowest=TRUE)
colors = my.greys[z]
plot(x,y,col=colors,bg=colors,...)
if (!is.null(legend.loc)) {

breaks.printable <- signif(breaks[1:n.levels],digits)
legend(legend.loc,legend=breaks.printable,fill=my.greys)

}
invisible(breaks)

}

Code Example 27: Map-making code. In its basic use, this takes vectors for x and
y coordinates, and draws gray points whose color depends on a third vector for z,
with darker points indicating higher values of z. Options allow for the control of
the number of gray levels, setting the breaks between levels automatically, and using
a legend. Returning the break-points makes it easier to use the same scale in multiple
maps. See online for commented code.

As you will recall from the homework, one of the big things wrong with the
linear model was that its errors, i.e., the residuals, were highly structured and very
far from random. In essence, it totally missed the existence of cities, and the fact
that urban real estate is more expensive. It’s a good idea, therefore, to make some
maps, showing the actual values, and then, by way of contrast, the residuals of the
models. Rather than do the plotting by hand over and over, let’s write a function
(Code Example 27).

Figures 9.7 and 9.8 show that allowing for the interaction of latitude and longitude
(the smoothing term plotted in Figures 9.5–9.6) leads to a much more random and
less systematic clumping of residuals. This is desirable in itself, even if it does little to
improve the mean prediction error. Essentially, what that smoothing term is doing is
picking out the existence of California’s urban regions, and their distinction from the
rural background. Examining the plots of the interaction term should suggest to you
how inadequate it would be to just put in a LONGITUDE⇥LATITUDE term in a linear
model.

13:58 Friday 15th February, 2013

209 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

calif.breaks <- graymapper(calif$Median_house_value, pch=16, xlab="Longitude",
ylab="Latitude",main="Data",break.by="quantiles")

graymapper(exp(preds.lm$fit), breaks=calif.breaks, pch=16, xlab="Longitude",
ylab="Latitude",legend.loc=NULL, main="Linear model")

graymapper(exp(preds.gam$fit), breaks=calif.breaks, legend.loc=NULL,
pch=16, xlab="Longitude", ylab="Latitude",main="First additive model")

graymapper(exp(preds.gam2$fit), breaks=calif.breaks, legend.loc=NULL,
pch=16, xlab="Longitude", ylab="Latitude",main="Second additive model")

Figure 9.7: Maps of real prices (top left), and those predicted by the linear model
(top right), the purely additive model (bottom left), and the additive model with
interaction between latitude and longitude (bottom right). Categories are deciles of
the actual prices.

13:58 Friday 15th February, 2013

9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 210

graymapper(calif$Median_house_value, pch=16, xlab="Longitude",
ylab="Latitude", main="Data", break.by="quantiles")

errors.in.dollars <- function(x) { calif$Median_house_value - exp(fitted(x)) }
lm.breaks <- graymapper(residuals(calif.lm), pch=16, xlab="Longitude",

ylab="Latitude", main="Residuals of linear model",break.by="quantile")
graymapper(residuals(calif.gam), pch=16, xlab="Longitude",

ylab="Latitude", main="Residuals errors of first additive model",
breaks=lm.breaks, legend.loc=NULL)

graymapper(residuals(calif.gam2), pch=16, xlab="Longitude",
ylab="Latitude", main="Residuals of second additive model",
breaks=lm.breaks, legend.loc=NULL)

Figure 9.8: Actual housing values (top left), and the residuals of the three models.
(The residuals are all plotted with the same color codes.) Notice that both the linear
model and the additive model without spatial interaction systematically mis-price ur-
ban areas. The model with spatial interaction does much better at having randomly-
scattered errors, though hardly perfect. — How would you make a map of the mag-
nitude of regression errors?

13:58 Friday 15th February, 2013

211 9.5. CLOSING MODELING ADVICE

Including an interaction between latitude and longitude in a spatial problem is
pretty obvious. There are other potential interactions which might be important
here — for instance, between the two measures of income, or between the total num-
ber of housing units available and the number of vacant units. We could, of course,
just use a completely unrestricted nonparametric regression — going to the opposite
extreme from the linear model. In addition to the possible curse-of-dimensionality
issues, however, getting something like npreg to run with 7000 data points and 11
predictor variables requires a lot of patience. Other techniques, like nearest neighbor
regression or regression trees, may run faster, though cross-validation can be demand-
ing even there.

9.5 Closing Modeling Advice
With modern computing power, there are very few situations in which it is actually
better to do linear regression than to fit an additive model. In fact, there seem to be
only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts linear
relationships among the variables we measure (not others, for which our observ-
ables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear the-
ory, the truly scientific thing to do would be to check linearity, by fitting a flexible
non-linear model and seeing if it looks close to linear. (We will see formal tests based
on this idea in Chapter 10.) Even when the second reason applies, we would like to
know how much bias we’re introducing by using linear predictors, which we could
do by randomly selecting a subset of the data which is small enough for us to manage,
and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these reasons applies: theory doesn’t tell us to expect linearity, and our
machines don’t compel us to use it. Linear regression is then employed for no better
reason than that users know how to type lm but not gam. You now know better, and
can spread the word.

9.6 Further Reading
Simon Wood, who wrote the mgcv package, has a very nice book about additive
models and their generalizations, Wood (2006); at this level it’s your best source for
further information. Buja et al. (1989) is a thorough theoretical treatment.

Ezekiel (1924) seems to be the first publication advocating the use of additive
models as a general method, which he called “curivilinear multiple correlation”. His
paper was complete with worked examples on simulated data (with known answers)

13:58 Friday 15th February, 2013

9.6. FURTHER READING 212

and real data (from economics)10. He was explicit that any reasonable smoothing or
regression technique could be used to determine the partial response functions. He
also gave a successive-approximation algorithm for finding partial response functions:
start with an initial guess about all the partial responses; plot all the partial residuals;
refine the partial responses simultaneously; repeat. This differs from back-fitting in
that the partial response functions are updating in parallel within each cycle, not one
after the other. This is a subtle difference, and Ezekiel’s method will often work, but
can run into trouble with correlated predictor variables, when back-fitting will not.

10“Each of these curves illustrates and substantiates conclusions reached by theoretical economic analy-
sis. Equally important, they provide definite quantitative statements of the relationships. The method of
. . . curvilinear multiple correlation enable[s] us to use the favorite tool of the economist, caeteris paribus,
in the analysis of actual happenings equally as well as in the intricacies of theoretical reasoning” (p. 453).

13:58 Friday 15th February, 2013

