
Convex Optimization 10-725/36-725
Homework 1, due September 19

Instructions:

• You must complete Problems 1–3 and either Problem 4 or Problem 5 (your choice
between the two).

• When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or
scanned handwritten exercises) for the solution of each problem separately, to black-
board. You should your name at the top of each file, except for the first problem. Your
solution to Problem 1 (mastery set) should appear completely anonymous
to a reader.

1 Mastery set [25 points] (Aaditya)

Be very concise. If written up and scanned, should be less than two sides in total for the
whole mastery set. If Latex-ed up, should be less than one side.

A1 [2] Define ∆k := {x ∈ Rk|xi ≥ 0,
∑

i xi = 1}. Let M ⊂ Rn be an arbitrary set, C ⊂ Rn

be a convex set and k ∈ N be an arbitrary natural number. Show that if x1, ..., xk ∈ C and
θ1, ..., θk ∈ ∆k, then their convex combination y =

∑
i θixi is also in C. The definition of

convexity holds for k = 2, you need to prove it for any general k > 2.

A2 [3] Then, define conv1(M) to be the intersection of all convex sets containing M and
define conv2(M) to be the set of all convex combinations of points in M . Use the previous
proof to show that conv1(M) = conv2(M) by showing that each set contains the other.

B1 [2+2] Is a hyperplane HP (a, b) = {x ∈ Rd|a>x = b} a convex set? Justify. What is
the distance between parallel hyperplanes HP (a, b1) and HP (a, b2)?

1

B2 [2+2] Is a half space HS(a, b) = {x ∈ Rd|a>x ≤ b} a convex set? Justify. Under
what conditions on a1, b1, a2, b2 does one half space HS(a1, b1) completely contain another
HS(a2, b2)?

B3 [2] For any two points u, v ∈ Rd, show using the previous parts that the set of points
which is closer in euclidean distance to u than to v is a convex set.

C [2+3] Suppose f : R+ → R is convex. Show that f(sx) is convex for any s > 0. Show
that its running average F (x) = 1

x

∫ x
0
f(t)dt is convex.

D [3+2] Convert the following LP to standard form of minu c
>u subject to Au = b, u ≥ 0.

maxx,y,z 3x− y + z subject to −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, x+ y + z = 1. What is the optimal
value of this LP and attained at what point?

2 LPs and gradient descent in Stats/ML [25 points]

(Sashank)

A [4+4+5] Consider the following basis pursuit problem:

min
β∈Rp

‖β‖1 s.t. y = Xβ. (1)

We claim that this is equivalent to the linear program

min
β+,β−∈Rp

1T (β+ + β−) s.t. y = X(β+ − β−), β+ ≥ 0, β− ≥ 0. (2)

Please answer the following questions concisely.

(a) Argue that the optimal criterion value in (2) is always less than or equal to the optimal
criterion value in (1). (Hint: think positive and negative parts.)

(b) Argue that the optimal criterion value in (2) is in fact always equal to that in (1), since
given any solution (β̂+, β̂−) in (2), we can always transform it into a solution in (1).

(c) Now consider the following problem:

min
β∈Rp

m∑
i=1

max
j=1,...n

fij(β) s.t. y = Xβ. (3)

where fij(β) = a>ijβ + bij, aij ∈ Rp, bij ∈ R ∀i ∈ {1, · · ·m} and j ∈ {1, · · · , n}. This can be
viewed as a generalization of (1). Write an equivalent LP for the problem (3).

2

B [6+6] Given pairs (xi, yi), for an outcome yi and feature measurements xi ∈ Rp, i =
1, . . . n, suppose that we want to fit a model of the form yi ≈ f̂(xi). Boosting generally
provides a way of fitting a flexible additive model

f̂(x) =
M∑
j=1

β̂j · hj(x), (4)

where hj : Rp → R, j = 1, . . .M are given functions of the features, called “weak learners”.
Here M could be very large, or even inifinite, i.e., we may have an enormous collection of
possible weak learners.

In particular, gradient boosting fits a model of the form (4) using something like gradient
descent. The idea is to greedily build the model (4) by including one weak learner hj at a
time. Here are the details. (See also Friedman (2001), and Chapter 10 of Hastie, Tibshirani,
and Friedman (2009).) We first choose a loss function L(yi, ŷi); for example, this could be
L(y, ŷi) = (yi − ŷi)

2, least squares loss, if we were in a regression setting. The total loss
between observations y = (y1, . . . yn) and predictions ŷ = (ŷ1, . . . ŷn) is then

F (ŷ) =
n∑
i=1

L(yi, ŷi).

We start with coefficients β̂j = 0 for j = 1, . . .M , and hence predictions ŷi = f̂(xi) = 0 for
i = 1, . . . n. Then we repeat the following steps:

i. Compute the gradient g ∈ Rn of F (ŷ), whose components are given by gi = ∂L(yi, ŷi)/∂ŷi,
evaluated at ŷi = f̂(xi), i = 1, . . . n.

ii. Find the weak learner that best matches the negative gradient −g, in the least squares
sense:

hj(x) = argmin
h`, `=1...M

(
min
α∈R

n∑
i=1

(
− gi − α · h`(xi)

)2)
.

iii. Step size selection: choose α̂j to minimize the loss when adding hj(x) to the model:

α̂j = argmin
αj∈R

n∑
i=1

L
(
yi, ŷi + αj · hj(xi)

)
.

iv. Update our cofficients β̂j ← β̂j + α̂j and hence our fitted model by

f̂(x)← f̂(x) + α̂j · hj(x).

Now the questions:

3

(a) Suppose that yi is a continuous measurement, i.e., we are in a regression setting. Derive
the gradient boosting updates explicitly for least squares loss L(yi, ŷi) = (yi − ŷi)

2, and
for weak learners hj(xi) = xij (i.e., simply the jth component of the p-dimensional feature
vector xi ∈ Rp), assuming that the features all have unit norm,

n∑
i=1

x2ij = 1, for all j = 1, . . . p.

What algorithm from lecture does this procedure remind you of?

(Hint: it may save you some algebra to work in matrix notation.)

(b) Suppose that yi ∈ {−1, 1}, i.e., we are in a classification setting. In this setting we
actually take the final classifier to be sign(ŷi) = sign(f̂(xi)), since f̂(x) is still real-valued.
What are the gradient boosting steps under binomial deviance loss

L(yi, ŷi) = log(1 + exp(−2yiŷi)),

and arbitrary weak learners hj, j = 1, . . .M , written as explicitly as possible? Can α̂j be
determined explicitly here? If not, what is an alternative fitting method for α̂j in step iii of
gradient boosting?

(Hint: again, it may help to work in matrix notation; and for fitting α̂j, think of what is
done in gradient descent.)

3 Programming gradient descent [25 points] (Yifei)

There are four functions to be minimized—a quadratic function, a ridge regularized logistic
regression, the Himmelblaus function and Rosenbrocks banana function:

fQ(x, y) = 1.125x2 + 0.5xy + 0.75y2 + 2x+ 2y (5)

fLL(x, y) = 0.5(x2 + y2) + 50 · log(1 + exp(−0.5y)) + 50 · log(1 + exp(0.2x)) (6)

fH(x, y) = 0.1(x2 + y − 11)2 + 0.1(x+ y2 − 7)2 (7)

fR(x, y) = 0.002(1− x)2 + 0.2(y − x2)2 (8)

This problem will involve programming. We recommend that you use Matlab or R. Still, you
can use another language of your choosing (e.g., Python), but we will only provide support
for Matlab and R.

(a) (5 pts) Plot the four functions as in Figure 1(a). The first three functions are on the
domain [−6, 6] × [−6, 6] and the last fR is on [−3, 3] × [−6, 6]. Which functions are
convex? Which are not?

4

(b) (8 pts) Implement gradient descent with fixed step sizes 0.3 and 0.8 and starting
from (2, 3)T , and 1 random point within the range in the previous question. Run
1000 iterations. For every function, every step size, and every initialization, plot the
trajectory on top of the contour of the function, like Figure 1(b,c).

(c) (6 pts) Implement gradient descent with back tracking line search from the same start-
ing points. The initial step size is 1, the back track ratio is 0.5, the slope ratio is 0.5,
the maximum number of back tracks is 10. Run 1000 iterations and plot one trajectory
on top of the contour for every function and every initialization.

(d) (4 pts) Implement gradient descent from the same starting points with step size = 1/k,
where k is the current count of iteration. Run 1000 iterations and plot one trajectory
on top of the contour for every function and every initialization.

(e) (2 pts) For some problems, why does the large step size not work? [Hint: check the
eigenvalues of the Hessian.] What are the two criteria needed for the shrinking step
sizes?

Along with your report please submit your code as well in a zip file to blackboard. Your
implementation should be commented well enough to be able to understand, and it should
also contain a batch file that can reproduce (up to a randomizing effect) all your plots.

Hint: The attached code (demo.m) and the following two missing functions generate plots
similar to Figure 1.

function [Xs, fcn_vals] = gd_fixed_stepsize(fcn, grad_fcn, ...

init_X, nb_steps, stepsize_fixed);

function [Xs_bt, fcn_vals_bt, stepsizes_bt] = gd_backtrack(fcn, grad_fcn, ...

init_X, nb_steps, stepsize0_bt, bt_rate, nb_bt_steps, slope_ratio);

−5

0

5

−5

0

5

0

50

100

x

x
2
+2 y

2

y

(a) function visualization

x

y

x
2
+2 y

2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b) fixed stepsize 0.4

x

y

x
2
+2 y

2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(c) backtracking

Figure 1: Visualization and gradient descent trajectories for fdemo(x, y) = x2 + 2y2.

5

4 Convergence rate of subgradient method [25 points]

(Adona)

Recall that the subgradient method for minimizing a convex function f : Rn → R starts
with an initial point x(0) ∈ Rn, and repeats for k = 1, 2, 3, . . .

x(k) = x(k−1) − tk · g(k−1),

where g(k−1) ∈ ∂f(x(k−1)), a subgradient of f evaluated at x(k−1). Since this is not neces-

sarily a descent method, at each iteration k we keep track of the best iterate x
(k)
best among

x(0), x(1), . . . x(k), defined so that

f(x
(k)
best) = min

i=0,...k
f(x(i)).

Here we will derive a basic inequality for bounding f(x
(k)
best)−f(x?), with x? being a minimizer

of f , and we will use this bound to analyze the convergence of subgradient method under
various choices of step sizes.

In addition to assuming that f is convex, we will also assume that f is Lipschitz continuous
with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G‖x− y‖2.
We will denote R = ‖x(0) − x?‖2.

(a) (4 points) Use x(k) = x(k−1) − tkg(k−1) and the definition of a subgradient of f at x(k−1)

to show that

‖x(k) − x?‖22 ≤ ‖x(k−1) − x?‖22 − 2tk
(
f(x(k−1))− f(x?)

)
+ t2k‖g(k−1)‖22.

(b) (5 points) Iterate the inequality from part (a), and use the Lipschitz assumption, and
R = ‖x(0) − x?‖2, to show that

‖x(k) − x?‖22 ≤ R2 − 2
k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+G2

k∑
i=1

t2i .

(Hint: prove that if f is Lipschitz with constant G, then this implies a bound on the norm
of its subgradients.)

(c) (4 points) Use ‖x(k) − x?‖2 ≥ 0, and rearrange the result of part (b) to give an upper

bound on 2
∑k

i=1 ti(f(x(i−1)) − f(x?)). Then use the definition of f(x
(k)
best) to conclude that

f(x
(k)
best)− f(x?) ≤ R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
. (9)

We’ll call this our basic inequality.

6

(d) (4 points) Consider a constant step size tk = t for all k = 1, 2, 3, Plug this into our
basic inequality in (9), and take the limit as k →∞. What do you conclude?

(e) (4 points) Consider a sequence of step sizes satisfying

∞∑
i=1

t2i <∞ and
∞∑
i=1

ti =∞.

For such step sizes, take the limit as k → ∞ in the basic inequality (9). Now what do you
conclude?

(f) (4 points) Finally, fixing some number of iterations k, consider the choice of step size
ti = R/(G

√
k) for all i = 1, . . . k. Plugging this into the basic inequality (9), what upper

bound do you have on f(x
(k)
best)− f(x?)? As it turns out, this actually minimizes the bound

on the right-hand side of (9). Hence, from this, what would be the best we can prove about
the convergence rate of the subgradient method?

5 Gradient boosting for digit classification [25 points]

(Adona)

In this problem you will implement gradient boosting for a classification task using stumps
as weak learners. Recall the description of gradient boosting in Problem 2, part B. In the
current classification setting, we have yi ∈ {−1, 1}, but our predictions ŷi = f̂(xi) can be
actually real-valued (due to the nature of how we fit f̂), so we take sign(ŷi) = sign(f̂(xi)) as
the class of xi, and generally, sign(f̂(x)) as our classifier for an input x ∈ Rp. We will use
binomial deviance loss, i.e., the loss between an observation yi ∈ {−1, 1} and a prediction
ŷi ∈ R is given by

L(yi, ŷi) =
n∑
i=1

log
(
1 + exp(−2yiŷi)

)
.

As mentioned, our weak learners h` : Rp → R, ` = 1, . . .M will be stumps: these are just
trees of depth 2. We can actually think about indexing the set of all stumps on Rp by three
parameters ` = (j, c, s), with j ∈ {1, . . . p} being the variable to be split, c ∈ R being the
split point, and s ∈ {−1, 1} being the side of the split point that we attribute to class 1.
Therefore, a stump hj,c,s gives a prediction

hj,c,s(x) =

{
1 if s · xj ≥ c

−1 otherwise
= 2 · 1{s · xj ≥ c} − 1.

You may think the set of such stumps is infinite (since c ∈ R), but when fit to a set of
features x1, . . . xn ∈ Rp, it is effectively finite, because for each j = 1, . . . p, we suffer no

7

loss of generality in letting c range over the midpoints between each pair of adjacent points
x1j, x2j, . . . xnj in sorted order. Your fitted model will have the form

f̂(x) =
∑

`=(j,c,s)

β̂j ·
(
2 · 1{s · xj ≥ c} − 1

)
, (10)

and remember, you will classify according to sign(f̂(x)).

(a) (15 points) Write a function—in R or Matlab (you can also use Python, or any language
of your choosing, but we will only provide support for R and Matlab)—to perform gradient
boosting stumps as weak learners, under binomial deviance loss. Your function should be
able to use either a fixed step size α̂` at each iteration (step iii of gradient boosting as
described in Problem 2, part B), or backtracking line search to adaptively fit α̂` at each
iteration. Its termination criterion should just be some maximum number of iterations, to
be specified by the user.

You may approach this coding problem in any way you see fit, but we recommend breaking
down the task into the following subparts.

• Write a function to output predictions from the model (10), given coefficients β̂` cor-
responding to stumps ` = (c, j, s).

• Write a function to find the closest stump ` = (j, c, s), in the least squares sense, to an
arbitrary vector g ∈ Rn; i.e., this is the stump that minimizes

min
α∈R

n∑
i=1

(
− gi − α · hj,c,s(xi)

)2
,

over all possible choices of j, c, s. (Note: this will be used in step ii of gradient boosting.)

• Write a function to perform backtracking line search given a stump hj,c,s and current
predictions ŷ = (ŷ1, . . . ŷn); i.e., for backtracking parameters γ1, γ2, this function begins
with some large initial value for the step size α, and while:

n∑
i=1

L
(
yi, ŷi + α · hj,c,s(xi)

)
>

n∑
i=1

L(yi, ŷi)− γ1 · α‖g‖22,

it repeats α ← γ2 · α. Here g is the gradient, i.e., gi = ∂L(yi, ŷi)/∂ŷi for i = 1, . . . n.
(Note: this will be used in step iii of gradient boosting.)

• Write the loop for gradient boosting, plugging in the relevant subfunctions, and fi-
nally write the master function for gradient boosting that takes in all of the relevant
arguments.

(b) (10 points) Download the zip code data from the website for the Elements of Statis-
tical Learning book, http://www-stat.stanford.edu/~tibs/ElemStatLearn—go to the
“Data” link on the left hand side, and then scroll to the bottom of the page for the zip

8

http://www-stat.stanford.edu/~tibs/ElemStatLearn

code data. Download both the training and test sets; read the info to figure out how to
appropriately parse these texts files with R or Matlab. (These are 16× 16 grayscale images
that have been unraveled in 256 dimensional vectors; you can plot any row of the training
or test set matrix to convince yourself that you’re looking at handwritten digits.)

For digits “5” and “6” as classes −1 and 1, respectively, run your gradient boosting algorithm
from part (a) on the training set. You should keep track of the test error of the fitted
classifier at each iteration, over 1000 iterations. In particular, run gradient boosting for
several different choices of fixed step sizes, and choices of backtracking parameters, and plot
the training and test set error curves as a function of iteration. You should aim for 5-6 plots.
What do you see as the difference between small, fixed step sizes and the more aggressive
backtracking strategy? Your discussion should cover both the training and test error curves
(and it shouldn’t be all that long!).

9

	Mastery set [25 points] (Aaditya)
	LPs and gradient descent in Stats/ML [25 points] (Sashank)
	Programming gradient descent [25 points] (Yifei)
	Convergence rate of subgradient method [25 points] (Adona)
	Gradient boosting for digit classification [25 points] (Adona)

