
Convex Optimization 10-725/36-725
Homework 2, due Oct 3

Instructions:

• You must complete Problems 1–3 and either Problem 4 or Problem 5 (your choice
between the two).

• When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or
scanned handwritten exercises) for the solution of each problem separately, to black-
board. You should your name at the top of each file, except for the first problem. Your
solution to Problem 1 (mastery set) should appear completely anonymous
to a reader.

1 Mastery set [25 points] (Aaditya)

Be very concise. If written up and scanned, should be less than two sides in total for the
whole mastery set. If Latex-ed up, should be less than one side.

A [2 + 2] Let S be the set of all minimizers of a convex function f . Prove that S is
convex. Now suppose that f is strictly convex. Prove that S contains only one element, i.e.,
f has a unique minimizer.

B [2 + 2] What are the singular values of an n×n square orthogonal matrix? (justify in one
line) Show with a short example that the set of all orthogonal matrices is non-convex.

C [2 + 2 + 2] Show that every convex combination of orthogonal matrices has spectral
norm at most 1. In the second recitation, we showed that the spectral norm ‖A‖op is a
convex function of A. Here, prove that the unit spectral norm ball {A : ‖A‖op ≤ 1} is a
convex set. Is the spectral norm a Lipschitz function with respect to the spectral norm, i.e.
is |‖A‖op − ‖B‖op| ≤ L‖A − B‖op for some L? (Hint: use properties of norms from first
recitation)
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D [5] Use the above part to show that the convex hull of orthogonal matrices is the unit
spectral norm ball (hint: the reverse direction still needs to be shown).

E [4+2] For a differentiable λ-strongly convex function, starting from the Taylor-like first
order definition, prove that ‖∇f(y)−∇f(x)‖2 ≥ λ‖y − x‖2. (hint: proof is four lines long,
plenty of hints in the second recitation). If additionally, its gradient is L-Lipschitz, what
can we say about λ, L?

2 Subgradients of matrix norms [30 points, 8+9+9+4]

(Yifei)

In this problem, you’ll consider two types of matrix norms: the trace norm (also called the
nuclear norm) and the operator norm (also called the spectral norm). Recall that for a
matrix A, its trace norm is ‖A‖∗ =

∑r
i=1 σi(A), the sum of the singular values of A, and its

operator norm is ‖A‖op = σi(A), the largest singular value of A.

An important fact to know is that, in the matrix world, the inner product between matrices
A,B is given by tr(BTA), where tr(·) is the trace operator (sum of diagonal elements). [To
convince yourself of this, think about unraveling A,B as vectors and performing a usual
inner product—check that this matches tr(BTA).]

Now assume that A ∈ Rm×n has rank r and singular value decomposition A = UΣV T , where
U ∈ Rm×r,Σ ∈ Rr×r, V ∈ Rn×r. Parts (a) and (b) concern the subgradients of the trace
norm evaluated at A (we used these subgradients in lecture to derive a proximal gradient
algorithm for matrix completion). Parts (c) and (d) concern the subgradients of the operator
norm at A.

(a) [8 points] Prove that for any W ∈ Rm×n with ‖W‖op ≤ 1, UTW = 0, WV = 0, we have
‖UV T +W‖op ≤ 1.

(Hint: look at the singular value decomposition of UV T +W .)

(b) [4 points] Prove that for any such W as in (a), we have tr((UV T +W )TA) = tr(Σ).

(c) [4 points] Prove that the subdifferential of the trace norm evaluated at A satisfies

∂‖A‖∗ ⊇ {UV T +W : W ∈ Rm×n, ‖W‖op ≤ 1, UTW = 0,WV = 0}.

[Hint: it will be helpful to use the fact that the dual of the trace norm is the operator norm,
i.e.,

‖A‖∗ = max
‖B‖op≤1

tr(BTA).

Now recall the rule for subgradients of functions defined via a max operation.]
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Note: the above is actually an equality, not a containment, for ∂‖A‖∗. Proving the reverse
direction is only a little bit more tricky.

(d) [10 points] Using the same strategy that was used in parts (a)–(c), prove that

∂‖A‖op ⊇ conv
(
{ujvTj : Σjj = Σ11}

)
,

where again we use A = UΣV T to denote the SVD of A, and uj, vj are the jth columns of
U, V , respectively. (Note that Σ11 is the largest entry in Σ.)

[Hint: as before, use the dual relationship between the trace and operator norms,

‖A‖op = max
‖B‖∗≤1

tr(BTA).

and the rule for subgradients of functions defined by a maximum.]

(e) [4 points] The result in (d) is actually an equality for ∂‖A‖op, though again, we will not
prove the reverse containment since it is a little more tricky. Assuming this fact, when does
the subdifferential ∂‖A‖op contain a single element? Hence what can you conclude about
the differentiability of the operator norm at a matrix A?

3 Algorithms for matrix completion [30 points] (Sashank)

In this problem we will compare generalized gradient descent and sub-gradient descent on
the task of matrix completion. Given a partially observed matrix Y , we can formulate matrix
completion as optimizing the following objective:

Bλ = argmin
B∈Rm×n

1

2

∑
(i,j)∈Ω

(Yij −Bij)
2 + λ‖B‖∗ (1)

= argmin
B∈Rm×n

1

2
‖PΩ(Y −B)‖2

F + λ‖B‖∗, (2)

where Y ∈ Rm×n is the partially observed matrix, Ω ⊂ {1, . . .m}×{1, . . . n} is the observed
entry set, ‖ · ‖∗ is the trace norm, and PΩ(·) : Rm×n → Rm×n is the projection operator onto
the observed set Ω:

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω

0 (i, j) /∈ Ω.

We are going to compare different algorithms for optimizing the above objective on a subset
of the MovieLens dataset. The MovieLens dataset consists of a large, sparse matrix Y , where
the rows and columns of Y represent users and movies respectively. Specifically, the entry
Yij represents the rating of user i for movie j. Since not all users rated all movies, many
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entries of Y are missing. Your task in this question is to complete the movie ratings matrix
Y .

For detailed analysis, we actually provide two matrices Y : a ’training’ matrix Y tr, and
’test’ matrix Y te. You can think of the two matrices as two different subsamples from some
ground-truth full matrix. We will use Y tr to learn a completed matrix Bλ for each value of
λ, and then use the error between Y te and Bλ to choose the best λ. In other words, we will
choose a λ which generalizes well to new incomplete information of the same kind.

Let P te
Ω be the projection onto the observed entry set for the test matrix, and k the number of

observed entries in Y te. The test error (RMSE) used to choose λ is defined as follows:

RMSE =
‖P te

Ω (Y te −Bλ)‖F√
k

.

Download the data from http://www.stat.cmu.edu/~ryantibs/convexopt/homeworks/

movie_data.zip.

(a) [10] Recall the soft-impute algorithm discussed in lecture, with updates:

B+ = Sλ
(
PΩ(Y tr) + P⊥Ω (B)

)
,

where Sλ(·) is the matrix soft-thresholding operator, and P⊥Ω = I − PΩ, the projector onto
the unobserved set. Recall that this is just proximal gradient descent with a fixed step size
t = 1. Implement the soft impute function in MATLAB or R with Λ = logspace(0, 3, 30).
You can just implement a “naive” function for matrix soft-thresholding, which just computes
the entire SVD and uses it for thresholding. For each of the 30 values of λ, run soft-
impute on training data until convergence, starting from B = 0. The stopping criteria is
|fk+1−fk|

fk
< 10−4 where fk is the objective function value at kth iteration or maximum of 500

iterations (whichever occurs first) .

(b) [5] Record and plot the number of iterations it took to converge at each value of log(λ).
Plot the RMSE error on training and test data versus log(λ). What value of λ would you
choose, and what is the rank of the corresponding solution?

(c) [5] Now across the 30 values of λ, again run soft-impute until convergence, but this
time using warm starts. i.e., at each successive value of λ (in sorted order, from largest to
smallest) start the algorithm at the previously computed solution. Again record the number
of iterations required to converge at each λ value. Did the number of iterations change
in comparison to without warm start? If so, then why, roughly speaking, do warm starts
work?

(d) [10] Derive the sugradient method steps for the optimization problem 1, and implement
it. Run soft impute and subgradient method for 500 iterations and compare their objective
function values over Λ = {1, 5, 10}. For the subgradient method, use the step size tk = 1/k
for the kth iteration.
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Your comparison should involve three figures, one for each λ value. In each, plot fk − fmin

versus the iteration number k for both the subgradient and soft impute methods. Here fmin

is the minimum value of the objective function found overall (by either the subgradient or
soft impute method), and fk is the current value of the criterion at the kh iteration (for the
subgradient method, since it is not a descent method, this is the best value seen up until
the kth iteration). It will be helpful to put the y-axis in these figures on a log scale. Which
algorithm performed better?

4 Convergence rate of generalized gradient descent [15

points] (Adona)

Recall that the generalized gradient descent method for minimizing a composite function
f(x) = g(x) + h(x), for convex, differentiable g : Rn → R and convex h : Rn → R, begins
with an initial point x(0) ∈ Rn, and repeats

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
. (3)

Here we will assume that ∇g is Lipschitz with constant L > 0,

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 all x, y ∈ Rn,

and we will prove that by taking a fixed step size tk = t ≤ 1/L for all k = 1, 2, 3, . . ., the
generalized gradient algorithm has the exact same convergence guarantees as does gradient
descent.

It will be helpful to define the “generalized gradient” Gt of f so that the updates (3) look
like gradient descent updates. This is

proxt
(
x− t∇g(x)

)
= x− tGt(x), (4)

i.e.,

Gt(x) =
x− proxt

(
x− t∇g(x)

)
t

.

(a) [2] Show that ∇g being Lipschitz with constant L implies

f(y) ≤ g(x) +∇g(x)T (y − x) +
L

2
‖y − x‖2

2 + h(y),

for all x, y.

(b) [2] By plugging in y = x+ = x − tGt(x) into the result from (a), and letting t ≤ 1/L,
show that

f(x+) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖2

2 + h
(
x− tGt(x)

)
.
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(c) [4] Arguing directly from (4), use the definition of the proximal operator,

proxt(x) = argmin
z∈Rn

1

2t
‖x− z‖2

2 + h(z),

and the zero subgradient characterization of optimality, to show that

Gt(x)−∇g(x) ∈ ∂h
(
x− tGt(x)

)
.

(d) [3] Starting from the bound you had in (b), use the result of part (c), and the convexity
of g, h around an arbitrary z, to show that

f(x+) ≤ f(z) +Gt(x)T (x− z)− t

2
‖Gt(x)‖2

2,

for all z.

(e) [2] Take z = x in (d) to verify that the generalized gradient descent algorithm decreases
the criterion f at each iteration. Take z = x?, a minimizer of f , to yield

f(x+) ≤ f(x?) +
1

2t

(
‖x− x?‖2

2 − ‖x+ − x?‖2
2

)
.

(f) [2] Complete the proof, following the same strategy as in gradient descent, to con-
clude

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖2

2

2tk
.

5 Accelerating matrix completion [15 points] (Adona)

In this problem we will continue exploring the matrix completion algorithms of Q3, in par-
ticular how they combine with acceleration and backtracking, and how they behave on a
realistic dataset.

(a) [7] Implement the generalized gradient descent (soft-impute) algorithm of Q3(a) with
acceleration. Run both the non-accelerated and accelerated versions for different λs in Λ =
logspace(0, 3, 30), and plot the number of iterations the two algorithms took to converge for

each value of λ, starting from B = 0. As before, run the algorithms until either |fk+1−fk|
fk

<

10−4 (where fk is the objective function value at kth iteration), or after a maximum of 500
iterations (whichever occurs first). Further, for fixed λ = 10, plot and compare the value
of the objective at each iteration # with and without acceleration. What do you observe?
Does acceleration help for this problem?

(b) [2] Do the same as in part (a), but now using warm starts. Is there any difference in the
comparison between no acceleration and acceleration?
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(c) [6] Next we will explore how matrix completion performs as an algorithm for image recon-
struction. Download the image of Mona Lisa from http://www.stat.cmu.edu/~ryantibs/

convexopt/homeworks/mona_bw.jpg. Construct a test image by randomly subsampling
50% of the pixels, and setting the remaining pixels to zero. Run matrix completion with
accelerated generalized gradient descent on the subsampled image for a few (10-15) different
λs in the range 10−2− 102. What do you observe? Show the original image, the subsampled
image, and 3-4 reconstructions across the range of λs. Which λ returns the best results?
Repeat this experiment at 20% subsampling level, and show the best reconstructed image.
What λ did you choose in this case, and was it different from the best λ at 50% subsampling
level?
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