Convex Optimization 10-725/36-725 Homework 2, due Oct 3

Instructions:

- You must complete Problems 1–3 and **either Problem 4 or Problem 5** (your choice between the two).
- When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or scanned handwritten exercises) for the solution of each problem separately, to black-board. You should your name at the top of each file, except for the first problem. Your solution to Problem 1 (mastery set) should appear completely anonymous to a reader.

1 Mastery set [25 points] (Aaditya)

Be very concise. If written up and scanned, should be less than two sides in total for the whole mastery set. If Latex-ed up, should be less than one side.

A [2 + 2] Let S be the set of all minimizers of a convex function f. Prove that S is convex. Now suppose that f is strictly convex. Prove that S contains only one element, i.e., f has a unique minimizer.

B [2 + 2] What are the singular values of an $n \times n$ square orthogonal matrix? (justify in one line) Show with a short example that the set of all orthogonal matrices is non-convex.

C [2 + 2 + 2] Show that every convex combination of orthogonal matrices has spectral norm at most 1. In the second recitation, we showed that the spectral norm $||A||_{op}$ is a convex function of A. Here, prove that the unit spectral norm ball $\{A : ||A||_{op} \le 1\}$ is a convex set. Is the spectral norm a Lipschitz function with respect to the spectral norm, i.e. is $|||A||_{op} - ||B||_{op}| \le L||A - B||_{op}$ for some L? (Hint: use properties of norms from first recitation) **D** [5] Use the above part to show that the convex hull of orthogonal matrices is the unit spectral norm ball (hint: the reverse direction still needs to be shown).

E [4+2] For a differentiable λ -strongly convex function, starting from the Taylor-like first order definition, prove that $\|\nabla f(y) - \nabla f(x)\|_2 \ge \lambda \|y - x\|_2$. (hint: proof is four lines long, plenty of hints in the second recitation). If additionally, its gradient is *L*-Lipschitz, what can we say about λ, L ?

2 Subgradients of matrix norms [30 points, 8+9+9+4] (Yifei)

In this problem, you'll consider two types of matrix norms: the trace norm (also called the nuclear norm) and the operator norm (also called the spectral norm). Recall that for a matrix A, its trace norm is $||A||_* = \sum_{i=1}^r \sigma_i(A)$, the sum of the singular values of A, and its operator norm is $||A||_{\text{op}} = \sigma_i(A)$, the largest singular value of A.

An important fact to know is that, in the matrix world, the inner product between matrices A, B is given by $tr(B^T A)$, where $tr(\cdot)$ is the trace operator (sum of diagonal elements). [To convince yourself of this, think about unraveling A, B as vectors and performing a usual inner product—check that this matches $tr(B^T A)$.]

Now assume that $A \in \mathbb{R}^{m \times n}$ has rank r and singular value decomposition $A = U\Sigma V^T$, where $U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r}$. Parts (a) and (b) concern the subgradients of the trace norm evaluated at A (we used these subgradients in lecture to derive a proximal gradient algorithm for matrix completion). Parts (c) and (d) concern the subgradients of the operator norm at A.

(a) [8 points] Prove that for any $W \in \mathbb{R}^{m \times n}$ with $||W||_{\text{op}} \leq 1$, $U^T W = 0$, WV = 0, we have $||UV^T + W||_{\text{op}} \leq 1$.

(Hint: look at the singular value decomposition of $UV^T + W$.)

(b) [4 points] Prove that for any such W as in (a), we have $\operatorname{tr}((UV^T + W)^T A) = \operatorname{tr}(\Sigma)$.

(c) [4 points] Prove that the subdifferential of the trace norm evaluated at A satisfies

$$\partial \|A\|_* \supseteq \{UV^T + W : W \in \mathbb{R}^{m \times n}, \|W\|_{\text{op}} \le 1, U^T W = 0, WV = 0\}.$$

[Hint: it will be helpful to use the fact that the dual of the trace norm is the operator norm, i.e.,

$$||A||_* = \max_{||B||_{\mathrm{op}} \le 1} \operatorname{tr}(B^T A)$$

Now recall the rule for subgradients of functions defined via a max operation.]

Note: the above is actually an equality, not a containment, for $\partial ||A||_*$. Proving the reverse direction is only a little bit more tricky.

(d) [10 points] Using the same strategy that was used in parts (a)–(c), prove that

$$\partial \|A\|_{\mathrm{op}} \supseteq \operatorname{conv}(\{u_j v_j^T : \Sigma_{jj} = \Sigma_{11}\}),$$

where again we use $A = U\Sigma V^T$ to denote the SVD of A, and u_j, v_j are the *j*th columns of U, V, respectively. (Note that Σ_{11} is the largest entry in Σ .)

[Hint: as before, use the dual relationship between the trace and operator norms,

$$||A||_{\text{op}} = \max_{||B||_* \le 1} \operatorname{tr}(B^T A).$$

and the rule for subgradients of functions defined by a maximum.]

(e) [4 points] The result in (d) is actually an equality for $\partial ||A||_{\text{op}}$, though again, we will not prove the reverse containment since it is a little more tricky. Assuming this fact, when does the subdifferential $\partial ||A||_{\text{op}}$ contain a single element? Hence what can you conclude about the differentiability of the operator norm at a matrix A?

3 Algorithms for matrix completion [30 points] (Sashank)

In this problem we will compare generalized gradient descent and sub-gradient descent on the task of matrix completion. Given a partially observed matrix Y, we can formulate matrix completion as optimizing the following objective:

$$B_{\lambda} = \underset{B \in \mathbb{R}^{m \times n}}{\operatorname{argmin}} \frac{1}{2} \sum_{(i,j) \in \Omega} (Y_{ij} - B_{ij})^2 + \lambda \|B\|_*$$
(1)

$$= \underset{B \in \mathbb{R}^{m \times n}}{\operatorname{argmin}} \frac{1}{2} \| P_{\Omega}(Y - B) \|_{F}^{2} + \lambda \| B \|_{*},$$
(2)

where $Y \in \mathbb{R}^{m \times n}$ is the partially observed matrix, $\Omega \subset \{1, \ldots, m\} \times \{1, \ldots, n\}$ is the observed entry set, $\|\cdot\|_*$ is the trace norm, and $P_{\Omega}(\cdot) : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ is the projection operator onto the observed set Ω :

$$[P_{\Omega}(X)]_{ij} = \begin{cases} X_{ij} & (i,j) \in \Omega\\ 0 & (i,j) \notin \Omega. \end{cases}$$

We are going to compare different algorithms for optimizing the above objective on a subset of the MovieLens dataset. The MovieLens dataset consists of a large, sparse matrix Y, where the rows and columns of Y represent users and movies respectively. Specifically, the entry Y_{ij} represents the rating of user i for movie j. Since not all users rated all movies, many entries of Y are missing. Your task in this question is to complete the movie ratings matrix Y.

For detailed analysis, we actually provide two matrices Y: a 'training' matrix Y^{tr} , and 'test' matrix Y^{te} . You can think of the two matrices as two different subsamples from some ground-truth full matrix. We will use Y^{tr} to learn a completed matrix B_{λ} for each value of λ , and then use the error between Y^{te} and B_{λ} to choose the best λ . In other words, we will choose a λ which generalizes well to new incomplete information of the same kind.

Let P_{Ω}^{te} be the projection onto the observed entry set for the test matrix, and k the number of observed entries in Y^{te} . The test error (RMSE) used to choose λ is defined as follows:

$$RMSE = \frac{\|P_{\Omega}^{te}(Y^{te} - B_{\lambda})\|_{F}}{\sqrt{k}}$$

Download the data from http://www.stat.cmu.edu/~ryantibs/convexopt/homeworks/movie_data.zip.

(a) [10] Recall the soft-impute algorithm discussed in lecture, with updates:

$$B^+ = S_{\lambda} \big(P_{\Omega}(Y^{tr}) + P_{\Omega}^{\perp}(B) \big),$$

where $S_{\lambda}(\cdot)$ is the matrix soft-thresholding operator, and $P_{\Omega}^{\perp} = I - P_{\Omega}$, the projector onto the unobserved set. Recall that this is just proximal gradient descent with a fixed step size t = 1. Implement the soft impute function in MATLAB or R with $\Lambda = \text{logspace}(0, 3, 30)$. You can just implement a "naive" function for matrix soft-thresholding, which just computes the entire SVD and uses it for thresholding. For each of the 30 values of λ , run softimpute on training data until convergence, starting from B = 0. The stopping criteria is $\frac{|f_{k+1}-f_k|}{f_k} < 10^{-4}$ where f_k is the objective function value at k^{th} iteration or maximum of 500 iterations (whichever occurs first).

(b) [5] Record and plot the number of iterations it took to converge at each value of $\log(\lambda)$. Plot the RMSE error on training and test data versus $\log(\lambda)$. What value of λ would you choose, and what is the rank of the corresponding solution?

(c) [5] Now across the 30 values of λ , again run soft-impute until convergence, but this time using warm starts. i.e., at each successive value of λ (in sorted order, from largest to smallest) start the algorithm at the previously computed solution. Again record the number of iterations required to converge at each λ value. Did the number of iterations change in comparison to without warm start? If so, then why, roughly speaking, do warm starts work?

(d) [10] Derive the sugradient method steps for the optimization problem 1, and implement it. Run soft impute and subgradient method for 500 iterations and compare their objective function values over $\Lambda = \{1, 5, 10\}$. For the subgradient method, use the step size $t_k = 1/k$ for the k^{th} iteration. Your comparison should involve three figures, one for each λ value. In each, plot $f_k - f_{\min}$ versus the iteration number k for both the subgradient and soft impute methods. Here f_{\min} is the minimum value of the objective function found overall (by either the subgradient or soft impute method), and f_k is the current value of the criterion at the kh iteration (for the subgradient method, since it is not a descent method, this is the best value seen up until the kth iteration). It will be helpful to put the y-axis in these figures on a log scale. Which algorithm performed better?

4 Convergence rate of generalized gradient descent [15 points] (Adona)

Recall that the generalized gradient descent method for minimizing a composite function f(x) = g(x) + h(x), for convex, differentiable $g : \mathbb{R}^n \to \mathbb{R}$ and convex $h : \mathbb{R}^n \to \mathbb{R}$, begins with an initial point $x^{(0)} \in \mathbb{R}^n$, and repeats

$$x^{(k)} = \operatorname{prox}_{t_k} \left(x^{(k-1)} - t_k \nabla g(x^{(k-1)}) \right).$$
(3)

Here we will assume that ∇g is Lipschitz with constant L > 0,

$$\|\nabla g(x) - \nabla g(y)\|_2 \le L \|x - y\|_2 \quad \text{all } x, y \in \mathbb{R}^n,$$

and we will prove that by taking a fixed step size $t_k = t \leq 1/L$ for all $k = 1, 2, 3, \ldots$, the generalized gradient algorithm has the exact same convergence guarantees as does gradient descent.

It will be helpful to define the "generalized gradient" G_t of f so that the updates (3) look like gradient descent updates. This is

$$\operatorname{prox}_t \left(x - t \nabla g(x) \right) = x - t G_t(x), \tag{4}$$

i.e.,

$$G_t(x) = \frac{x - \operatorname{prox}_t(x - t\nabla g(x))}{t}$$

(a) [2] Show that ∇g being Lipschitz with constant L implies

$$f(y) \le g(x) + \nabla g(x)^T (y - x) + \frac{L}{2} \|y - x\|_2^2 + h(y),$$

for all x, y.

(b) [2] By plugging in $y = x^+ = x - tG_t(x)$ into the result from (a), and letting $t \leq 1/L$, show that

$$f(x^{+}) \leq g(x) - t\nabla g(x)^{T} G_{t}(x) + \frac{t}{2} \|G_{t}(x)\|_{2}^{2} + h(x - tG_{t}(x)).$$

(c) [4] Arguing directly from (4), use the definition of the proximal operator,

$$\operatorname{prox}_{t}(x) = \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} \ \frac{1}{2t} \|x - z\|_{2}^{2} + h(z),$$

and the zero subgradient characterization of optimality, to show that

$$G_t(x) - \nabla g(x) \in \partial h (x - tG_t(x)).$$

(d) [3] Starting from the bound you had in (b), use the result of part (c), and the convexity of g, h around an arbitrary z, to show that

$$f(x^{+}) \le f(z) + G_t(x)^T(x-z) - \frac{t}{2} \|G_t(x)\|_2^2$$

for all z.

(e) [2] Take z = x in (d) to verify that the generalized gradient descent algorithm decreases the criterion f at each iteration. Take $z = x^*$, a minimizer of f, to yield

$$f(x^{+}) \le f(x^{\star}) + \frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x^{+} - x^{\star}\|_{2}^{2} \right).$$

(f) [2] Complete the proof, following the same strategy as in gradient descent, to conclude

$$f(x^{(k)}) - f(x^{\star}) \le \frac{\|x^{(0)} - x^{\star}\|_2^2}{2tk}$$

5 Accelerating matrix completion [15 points] (Adona)

In this problem we will continue exploring the matrix completion algorithms of Q3, in particular how they combine with acceleration and backtracking, and how they behave on a realistic dataset.

(a) [7] Implement the generalized gradient descent (soft-impute) algorithm of Q3(a) with acceleration. Run both the non-accelerated and accelerated versions for different λs in $\Lambda = \log space(0, 3, 30)$, and plot the number of iterations the two algorithms took to converge for each value of λ , starting from B = 0. As before, run the algorithms until either $\frac{|f_{k+1}-f_k|}{f_k} < 10^{-4}$ (where f_k is the objective function value at k^{th} iteration), or after a maximum of 500 iterations (whichever occurs first). Further, for fixed $\lambda = 10$, plot and compare the value of the objective at each iteration # with and without acceleration. What do you observe? Does acceleration help for this problem?

(b) [2] Do the same as in part (a), but now using warm starts. Is there any difference in the comparison between no acceleration and acceleration?

(c) [6] Next we will explore how matrix completion performs as an algorithm for image reconstruction. Download the image of Mona Lisa from http://www.stat.cmu.edu/~ryantibs/ convexopt/homeworks/mona_bw.jpg. Construct a test image by randomly subsampling 50% of the pixels, and setting the remaining pixels to zero. Run matrix completion with accelerated generalized gradient descent on the subsampled image for a few (10-15) different λ s in the range $10^{-2} - 10^2$. What do you observe? Show the original image, the subsampled image, and 3-4 reconstructions across the range of λ s. Which λ returns the best results? Repeat this experiment at 20% subsampling level, and show the best reconstructed image. What λ did you choose in this case, and was it different from the best λ at 50% subsampling level?