
Convex Optimization 10-725/36-725
Homework 3, due Oct 17

Instructions:

• You must complete Problems 1–3 and either Problem 4 or Problem 5 (your choice
between the two).

• When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or
scanned handwritten exercises) for the solution of each problem separately, to black-
board. You should your name at the top of each file, except for the first problem. Your
solution to Problem 1 (mastery set) should appear completely anonymous
to a reader.

1 Mastery set [25 points]

Be very concise. If written up and scanned, should be less than two sides in total for the
whole mastery set. If Latex-ed up, should be less than one side.

Q1. [2+2+3] Project a vector z ∈ Rn onto

a) the non-negative orthant Rn
+,

b) euclidean ball ‖x‖2 ≤ 1,

c) ∞-norm ball ‖x‖∞ ≤ 1

Q2. [3+3] Derive the prox operator (minx∈Rn(1/2)‖x− z‖22 + λh(x)) for

a) h(x) =
∑

i− log(xi)

b) h(x) = x>Ax+ b>x+ c where A is a symmetric n× n psd matrix.

1

Q3. [4+4+4] Derive the duals of the following LPs

a) maxx 2x1 + x2 subject to x1 − x2 ≤ 4, x1 − x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

b) maxx 2x1 + x2 subject to −x1 − x2 ≤ −4, x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

c) maxx 2x1 + x2 subject to −x1 + x2 ≤ −4, x1 − x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

What can you say about the primal and dual feasibility and optimal values in all these
settings?

2 Projections and proximal operators [25 points] (Adona)

Q1. [4+4] a) Project a symmetric real matrix onto the cone of all positive semidefinite
matrices. b) Project a vector y onto the space {z : z = Ax + b, x ∈ Rn}, for a given matrix
A ∈ Rm×n having full column rank

Q2. [5+7+5] Derive prox function for the regularizer (h(x) function) a) λ
∑

i(xi)+ b),
λ‖x‖2, c) λ‖x‖∞.

Hint for part (c): Define

Tρ(u) =


ρ if u > ρ

u if ρ ≤ u ≤ ρ

−ρ if u < −ρ

Show that the solution is x∗i = Tρ(zi) where ρ is such that ‖x∗ − z‖1 = λ.

3 Newton and quasi-Newton methods [25 points] (Sashank)

Let us revisit the functions given in Homework 1. In this assignment, we will compare the
performance of few second-order methods on these functions.

fQ(x, y) = 1.125x2 + 0.5xy + 0.75y2 + 2x+ 2y (1)

fLL(x, y) = 0.5(x2 + y2) + 50 · log(1 + exp(−0.5y)) + 50 · log(1 + exp(0.2x)) (2)

fH(x, y) = 0.1(x2 + y − 11)2 + 0.1(x+ y2 − 7)2 (3)

fR(x, y) = 0.002(1− x)2 + 0.2(y − x2)2 (4)

This problem will involve programming. We recommend that you use Matlab or R. Still, you
can use another language of your choosing (e.g., Python), but we will only provide support
for Matlab and R.

2

(a) (6 pts) Implement Newton method with fixed step size 1. For every function, starting
from origin, plot the trajectories on top of the contour of the function (like in Homework
1). The stopping criterion is ‖gk‖ < 10−6 where gk is the gradient at point xk.

(b) (10 pts) Implement BFGS line search from the same starting point. Recall, you need
to implement line search for BFGS method. Use initial step size is 1, the back track
ratio (β) is 0.5, the slope ratio (α) is 0.5, the maximum number of back tracks is 10.
Use the same stopping criterion as above. Plot similar trajectories for BFGS method.

(c) (6 points) Compare your solutions (final points and function values) with Newton
method. Are they same? If not, can you roughly explain the reason they converge to
different solutions? Also, rerun the experiments and report the final points when you
start from (2, 2) and (3, 3). Are they different?

(d) (3 pts) Now compare the number of iterations required for convergence in Newton,
BFGS and gradient descent methods. Which one performs the best? It should be noted
that computation required for each iteration is different for each of these methods.
Compare the computational complexity of these methods for each iteration (give a
rough count, in terms of an arbitrary dimension n for the optimization variable, even
though we have n = 2 for this problem).

Along with your report please submit your code as well in a zip file to blackboard. Your
implementation should be commented well enough to be able to understand, and it should
also contain a batch file that can reproduce (up to a randomizing effect) all your plots.

4 Regularized logistic regression dual [25 points] (Yifei)

Consider the problem of regularized logistic regression

min
β∈Rp

n∑
i=1

−
(
ti · xTi β − log

(
1 + exp(xTi β)

))
+ λ

m∑
j=1

|dTj β|, (5)

where ti ∈ {0, 1} are the observed outcomes and xi ∈ Rp the predictors, i = 1, . . . n, and
dj ∈ Rp, j = 1, . . .m are given vectors. We’ll refer to this as logistic regression with a
generalized lasso penalty. Note that this generalizes the lasso logistic regression problem,
which is a special case with dj = ej (the jth standard basis vector) for j = 1, . . . p.

(a) (6 pts) Show that (5) can be equivalently written as

min
β∈Rp

n∑
i=1

log
(
1 + exp(−yi · xTi β)

)
+ λ‖Dβ‖1, (6)

where D ∈ Rm×p with jth row dj and yi = 2ti − 1 ∈ {−1, 1}.

3

(b) (11 pts) When X = I (i.e., xi = ei for i = 1, . . . n), the above problem becomes

min
β∈Rn

n∑
i=1

log
(
1 + exp(−yi · βi)

)
+ λ‖Dβ‖1. (7)

Prove that the dual of the above problem is

max
α∈Rm

−
n∑
i=1

((
yi(D

Tα)i
)

log
(
yi(D

Tα)i
)

+
(
1− yi(DTα)i

)
log
(
1− yi(DTα)i

))
(8)

subject to − λ ≤ α ≤ λ , 0 ≤ yi(D
Tα)i ≤ 1.

[Hint: (7) can be written with slack variables as

min
β∈Rn,`,u∈Rm

`,u≥0

n∑
i=1

log
(
1 + exp(−yi · βi)

)
+ λ

m∑
j=1

(uj + `j).

s.t. w = Dβ, −` ≤ w ≤ u.]

(c) (2 pts) Among algorithms we’ve learned so far, would you be able to apply any to them
to solve the primal problem (7)? Briefly explain why or why not. What about the dual
problem (8)?

(d) (6 pts) What is the relationship between the solutions β̂ and α̂ of (7) and (8)? If you
knew a dual solution α̂, could you easily compute a primal solution β̂? How about the other
way around?

5 Nonnegative matrix factorization with gradient de-

scent [25 points] (Yifei)

Let V ∈ Rm×n be a given matrix, and 0 < k < min(m,n) be a given positive integer.

The goal of nonnegative matrix factorization (NMF) is to solve

J = min
W≥0,H≥0

‖V −WH‖2F (9)

where W ∈ Rm×k, H ∈ Rk×n, and A ≥ 0 denotes that Aij ≥ 0 for all i, j.

The NMF problem is a nonconvex problem, and therefore it is difficult to solve. However,
if we fix W, then the problem is convex in H, and similarly if H is fixed, then the problem
is convex in W. Therefore a commonly used approach is to do alternating minimization:
Fix W, optimize J in H, then fix H optimize J in W and repeat this process until conver-
gence.

4

Interestingly, there is an elegant gradient descent algorithm (GDA) for this approach where
the learning rate can be set such that GDA always generates feasible solutions, i.e. after
the updates the W and H matrices remain nonnegative. The update rule is given in this
paper Lee & Seung (2001) http://hebb.mit.edu/people/seung/papers/nmfconverge.

pdf . More information about NMF can be found in http://www.nature.com/nature/

journal/v401/n6755/abs/401788a0.html .

Your task is to implement this NMF algorithm on the CBCL FACE database http://cbcl.

mit.edu/software-datasets/FaceData2.html . A sample of the original faces look like

(a. 5 points) Take the original faces from face.txt , apply the following preprocessing:

For every face that is stored in a column of Vi, normalize it such that the median mi = 0.5
and the median of the deviation from the median is 0.25, i.e. median

j
(|Vji − mi|)=0.25.

Truncate values above 1 or below 1e− 4 (because we do not want exact zeros either). Now,
we have a V that looks like (sampled columns):

5

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html
http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://cbcl.mit.edu/software-datasets/FaceData2.html

(b. 10 points) Apply the algorithm Eq(4) in the paper Lee&Seung (2001) to optimize (9).
k = 49. Initialize every entry in your W and H as a random draw from uniform(0,1). Run
300 iterations. Plot the columns of W similar to the bellow. Also plot the objective value
in every iteration. What columns of W are more important?

(c. 5 points) Show, following the arguments in Lee & Seung (2001), that the algorithm you
have implemented is indeed performing gradient descent steps, with a cleverly chosen step
size that ensures the matrices W,H will have nonnegative entries at each step. What is
an alternative, still using gradient descent, to ensure that the entries of W,H are nonnega-
tive?

(d. 5 points) Now load face test.txt , reconstruct the faces by optimizing H with your learned
W fixed. What is the mean mean-squared-error of each reconstructed images (the objective
value normalized by the number of images)? Do your reconstructed faces look similar to test
faces?

To submit for (b) and (d) Submit the plots for parts (b) and (d) to answer the questions
asked. Please also submit the following functions (or similar functions if you are using
another language) in a zip file.

(a) function [V_normalized] = normalize_faces(V)

(b) function [W, H, objective_val_history] = nmf(V_normalized, k)

(c) function [objective_val_history, H] = test_faces(W, testV_normalized)

[Hint: the function compact canvas.m may come handy to plot the faces. You may find V
and Vtest in face.txt and face test.txt]

6

	Mastery set [25 points]
	Projections and proximal operators [25 points] (Adona)
	Newton and quasi-Newton methods [25 points] (Sashank)
	Regularized logistic regression dual [25 points] (Yifei)
	Nonnegative matrix factorization with gradient descent [25 points] (Yifei)

