
Convex Optimization 10-725/36-725
Homework 4, due Oct 31

Instructions:

• You must complete Problems 1–3 and either Problem 4 or Problem 5 (your choice
between the two).

• When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or
scanned handwritten exercises) for the solution of each problem separately, to black-
board. You should your name at the top of each file, except for the first problem. Your
solution to Problem 1 (mastery set) should appear completely anonymous
to a reader.

N.B. A few problems may appear quite long, but really, there is just a lot of text setting
up and motivating the problem. This does not mean more work for you! It’s simply trying
to give you an idea of where the problem is coming from, and why you’d want to solve it in
the first place.

1 Mastery set [20 points] (Yifei)

A [5 points]. Prove that the dual norm of the dual norm is the original norm.

B [5 points]. Another derivation for the prox operator for the L1 penalty minx
1
2
‖y−x‖22 +

λ‖x‖1. What is its dual problem? What is an obvious explicit solution to that dual problem?
What is the explicit solution to the primal problem using KKT conditions?

C [5 points]. Consider the linear programming problem

max
x1,x2

x1 + x2

s.t. x1 +
x2
2
≤ 1 (constraint u1)

x1
3

+ x2 ≤ 1 (constraint u2)

x1, x2 ≥ 0 (constraints u3, u4)

1

What is its dual problem paramerized by (u1, . . . , u4)? Do we have strong duality? What is
the KKT correspondences between the primal optimizer and the dual optimizer? How can
you change this problem to a feasibility problem that ellipsoid method uses?

D [5 points]. Prove that the dual problem of the dual problem on page 24 of lecture 14 is
the primal. Here, you may assume that f is closed and convex, which implies f ∗∗ = f .

2 Safe rules for the LASSO [25 points] (Adona)

By now you should be pretty familiar with the LASSO. As we’ve seen in class, the LASSO
is an algorithm for performing sparse linear regression, based on solving the following L−1
regularized optimization problem:

min
β

1

2
||Y −Xβ||22 + λ||β||1

We can solve the above problem using standard convex optimization methods such as gen-
eralized gradient descent, and we are guaranteed to obtain a solution β with a large number
of zeros. Moreover, we can prove that the solution is stable: with probability 1, perturbing
y slightly will generate a β with the same support (set of zero entries).

This exercise explores a very surprising result about the LASSO, and L − 1 regularized
problems in general: the fact that you can create a priori tests which can identify some
entries of β guaranteed to be zero, without needing to solve the optimization problem. The
tests likely won’t identify all of the zero entries, but could potentially identify a large number
of them, and thus greatly reduce the size of the optimization problem you need to actually
solve. This seems like it shouldn’t work, but it does, and it’s a great example of the power
of dual theory. Let’s see how it goes!

Consider a slightly more general setting than the LASSO, in which we are trying to optimize
the following L-1 problem:

min
β∈Rp

f(Xβ) + λ||β||1 (1)

where f is a convex function, X ∈ Rn×p, λ > 0.

It can easily be shown (and you will show below!) that the dual problem is:

max
u∈Rn

−f ∗(−u)

subject to ||XTu||∞ ≤ λ (2)

and that the stationarity KKT condition for β gives:

XTu ∈ λ∂||β||1 = λ

{
{sign(βi)}, if βi 6= 0

[−1, 1], if βi = 0
(3)

2

Figure 1:

Visualizing these results is very insightful. Consider Figure 1, taken from the original safe
rules paper1. We know that the dual objective −f ∗(−u) must be concave, so we can rep-
resent it via contour lines (the ellipses in the upper-right corner) around the unconstrained
maximum point (denoted θ0 instead of u0 in the figure). The constraints set of the dual
problem is the intersection of 2n half-planes, −λ ≤ XT

k u ≤ λ, so it is a polytope (the shaded
polytope in Figure 1). Optimizing problem (2) corresponds to finding the tightest contour
of the objective which still intersects the polytope, in other words finding the contour of the
objective tangent to the polytope. Further, from the KKT condition, we know that if any
of the constraints XT

k u is not tight (XT
k u < λ), then that entry of βk is zero. So the face of

the polytope the contour is tangent to determines our support set. This is key!

We can use this insight to come up with a clever way to generate a safe rule. Finding the
actual tangent contour line involves solving the optimization problem, and is a lot of work.
What if instead we use an approximation, a wider contour line corresponding to a lower value
of the objective −f ∗(−u)? Such a contour line might intersect more of the constraints than
the optimal one, so it might be suspicious of entries βk which are in reality zero. However,
any constraints it does not intersect correspond to entries βk which are guaranteed to be
zero.

Mathematically, assume we are given γ, a lower bound on our dual objective at the optimum:
−f ∗(−u∗) ≥ γ (the objective calculated at any feasible point u will do for now!). Then, we
can calculate:

Tk = max
u∈Rn

|XT
k u|

subject to − f ∗(−u) ≥ γ

1http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-126.html

3

and test Tk < λ (have we intersected the constraint or not). If k passes the test (not
intersected), then βk is guaranteed to be zero. This new optimization problem is in many
cases much simpler than the original problem in (1) or (2), since it no longer involves non-
smooth norms. We will see that for the LASSO, we can dualize it (!), and then solve it in
closed form. This will give us a direct, closed form test for whether a entry βk is guaranteed
to be zero. Ok, to work!

(a) [8 points] Show that the dual problem of (1) is (2), and derive the KKT condition in
(3).

(b) [7 points] Show that the dual of the (positive part) of the test Tk,+:

Tk,+ = max
u∈Rn

XT
k u

subject to − f ∗(−u) ≥ γ

is:

Tk,+ = min
µ>0
−µγ + µf(−Xk

µ
)

(c) [5 points] Substitute the LASSO function f(Xβ) = 1
2
||Y −Xβ||22, and minimize to show

that:
Tk,+ =

√
Y TY − 2γ + Y TX

Assume that X has normalized columns: XT
k Xk = 1 for all k.

(d) [2 points] Let

Tk,− = max
u∈Rn

−XT
k u

subject to − f ∗(−u) ≥ γ.

Show that
λ > Tk = max(Tk,+, Tk,−)

is equivalent to:
λ >

√
Y TY − 2γ + |Y TXk|.

Notice that we’ve just derived a safe rule which is trivial to evaluate; in other words, if the
above holds, then we can pre-determine that βk = 0 at the solution!

(e) [3 points] Let’s complete the rule; all that is left is we need a way to find a lower bound γ.
Show that you can obtain a dual feasible point by just scaling Y by a constant, i.e., u = sY
for a constant s, and give a corresponding (explicit) form for γ.

4

3 Binary sequences of piecewise constant expectation

[30 points]

Suppose that we observe a sequence of binary variables, zt ∈ {0, 1} across timepoints t =
1, 2, . . . n, and we believe that these variables are generated according to

zt
ind∼ Bin(pt), t = 1, . . . n,

where the underlying probabilities pt ∈ [0, 1] are piecewise constant across t = 1, . . . n. An
illustration looks something like this:

● ● ● ●

● ● ● ● ● ●

● ● ●

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Timepoint t

●

● ● ●

● ● ● ● ●

●

●

● ●

where the black hollow points represent the observed data points zt and the red solid points
the underlying probabilities pt.

As motivation, suppose that we are examining products that are being shipped to our com-
pany, one at a time, across timepoints t = 1, . . . n, and zt is the indicator that the product
t has a particular defect. We believe that the manufacturing process is such that there is
a given (constant) probability of defect across some unknown period of time, and then due
to a change in the process, this probability changes to some other value and remains there
for another unknown period of time, with another change potentially happening after that,
etc.

To construct an estimate of the underlying probabilities from the observed binary data, we
assume the model

pt =
eβt

1 + eβt
,

5

and compute estimates β̂t, t = 1, . . . n by solving the following minimization problem:

min
β∈Rn

n∑
t=1

(
− zt · βt + log(1 + eβt)

)
+ λ

n−1∑
t=1

|βt − βt+1|. (4)

This is a regularized logistic regression problem, with a fused lasso penalty. The tuning
parameter is λ ≥ 0.

(a) [2 points] Show that (4) fits into the setup considered by Problem 4 of Homework 3;
in particular, look at the setup considered in part (b) of this problem. What is the matrix
D ∈ Rm×n in the present case, and what is m?

Now that we have established this, we may use the result of Problem 4 of Homework 3 and
write the dual of (4) as

max
u∈Rm

g(u) := −
n∑
t=1

(
yt(D

Tu)t log
(
yt(D

Tu)t
)

+
(
1− yt(DTu)t

)
log
(
1− yt(DTu)t

))
(5)

subject to 0 ≤ yt(D
Tu)t ≤ 1, t = 1, . . . n

− λ ≤ ui ≤ λ, i = 1, . . .m,

where yt = 2zt − 1 ∈ {−1, 1}, t = 1, . . . n is a transformation of our binary sequence, and
D ∈ Rm×n the particular matrix that you described in (a). The dual variable u here is
m-dimensional, and from a dual solution û we can compute a primal solution via

β̂t = −yt log
(
yt(D

T û)t
)

+ yt log
(
1− yt(DT û)t

)
, t = 1, . . . n. (6)

(b) [2+2+2+2+2 points] Show that ∇g(u) = Dc(u) for some vector c. Show that ∇2g(u) =
DW (u)DT for some diagonal matrix W . Define φ(u) to be the log barrier function. Show
that ∇φ(u) = a(u) +Db(u) for some vectors a, b. Show that ∇2φ(u) = U(u) +DV (u)DT for
some diagonal matrices U, V . Hence for some barrier constant τ , when solving τg(u) +φ(u),
write down the Newton step direction.

(c) [8 points] Implement the barrier method using Newton’s method for the inner loops. Your
function for the barrier method should take as inputs (besides the obvious inputs z,D, λ): an
initial barrier parameter τ (0) > 0, an update parameter µ > 1 for the barrier parameter, an
initial step size s(0) before backtracking in Newton’s method, parameters γ1, γ2 > 0 for the
backtracking in Newton’s method, a tolerance εinner > 0 for the inner loop, and a tolerance
εouter > 0 for the outer loop.

(Hint 1: for the barrier method, you must begin with a strictly feasible point for (5); this is
not a trivial computation, but it’s one that can be solved with an LP.)

(Hint 2: to make your algorithm run faster, you can take advantage of the Hessian, i.e., the
structure of D, to efficiently solve the linear systems at each iteration of Newton’s method. In
R or Matlab, this is just done by making sure the Hessian is stored as a sparse matrix.)

6

(d) [10 points] Run your algorithm on the binary sequence data “binseq.txt” linked from the
class website, to solve the problem (4) with λ = 20. You can set τ (0) = 5, µ = 10, s(0) =
1, γ1 = 0.1, γ2 = 0.8, εinner = 1e − 8, εouter = 1e − 6. Note: you are actually solving the dual
(5); to get the primal solution, use the transformation (6).

Plot the estimated probabilities, p̂t = exp(β̂t)/(1 + exp(β̂t)), t = 1, . . . n, as a function of
t. How many iterations in total of Newton’s method were performed (i.e., how many linear
systems in total were solved) before convergence? What are the estimated times at which
the underlying probability of success changes?

4 Statistical estimation and penalty methods [25 points]

(Sashank)

A [KL divergence estimation]. For the first part, we will explore the use of optimization
problems for statistical estimation problems. In particular, we focus on estimation of KL
divergence between multivariate probability distributions P and Q. As input, we are given
set of samples {X1, . . . , Xn} and {Y1, . . . , Yn} from distributions P and Q, with densities p
and q respectively, over X ⊂ Rd. Our goal is to estimate KL divergence, which is given by
the following:

KL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx.

Assume that the support of densities p and q is X . One way to estimate the KL divergence
is to first estimate the densities p and q, and then calculate the KL divergence using these
estimators. This procedure is computational and statistically inefficient. We will take a
different route to estimate the KL divergence. Answer the following questions as concisely
as possible.

(a) [5 points] Prove that KL(P,Q) = supg>0

∫
log g(x)p(x)dx−

∫
g(x)q(x)dx+ 1. (Hint: use

the conjugate of log). What value of g(x) achieves the maximum?

(b) [2 points] Assuming that the empirical average is a good estimator of expected value,
e.g., 1

n

∑
i f(Xi) is a good enough approximation of

∫
f(x)p(x)dx, write down an estimator

for KL divergence.

(c) [5 points] Assume that the ratio g(x) = p(x)
q(x)

is of the form expw>x. Write a dual for the
optimization problem above. How will you solve this optimization problem?

It should be noted that while we used this procedure for KL divergence, it can be extended
to estimate a more general class of functionals.

7

B [Penalty methods]. Suppose that f , hi are convex differentiable functions, and let (P)
denote the following convex program:

min
x∈Rn

f(x)

subject to h(x) ≤ 0,

where h(x) = (h1(x), . . . , hm(x)).

Let h+i (x) = max(0, hi(x)), and construct the following penalty function:

p(x) =
m∑
i=1

h+i (x)

Using this penalty p, for any c > 0, we define the penalty problem (P (c)) as

min
x∈Rn

f(x) + cp(x).

The goal of this exercise is to show that for this particular penalty function p if the penalty
parameter c is large enough, then (P) and (P (c)) are equivalent. Let u∗ ∈ Rm be an optimal
solution of the dual of (P), and let c > ‖u∗‖∞. Let x∗ be a primal solution.

(i) [3 points] Write down all the KKT conditions involving x∗, u∗, f, h, p.

Using these conditions, and the convexity, differentiability of f, h, prove the following state-
ments:

(ii) [5 points] If a vector x̃ solves (P), u∗ is a dual optimal solution of (P), and c > ‖u∗‖∞,
then x̃ solves (P (c)) as well.

(iii)[5 points] If a vector x̃ solves (P (c)), u∗ is a dual optimal solution of (P), and c > ‖u∗‖∞,
then x̃ solves (P) as well.

5 Binary sequences revisited [25 points]

The binary sequence denoising problem (4) in Problem 3 is not an easy one to solve directly.
The typical plan of attack is the one explored in Problem 3, which solves the dual problem
using an interior point method. This is appealing because it can be efficient (the inner
Newton iterations are quite efficient, due to the structure of the Hessian), but it is perhaps
not the simplest approach.

What happens if we were to try to solve (4) directly using generalized gradient descent? To
do this, we would need to be able to evaluate the prox function

proxs(β) = argmin
x∈Rn

1

2s
‖β − x‖22 + λ

n−1∑
t=1

|xt − xt+1|. (7)

8

Evaluating such a prox function is difficult because the above problem does not have an
explicit (closed-form) solution; transparently, we would have to apply another iterative op-
timization technique to approximate its solution. Fortunately, your instructors and TAs are
smart people—actually, it’s just that they know other smart people—and are providing you
with code to evaluate the prox function in (7) exactly. This code is an implementation of
a beautiful algorithm by Nicholas Johnson (see “A dynamic programming algorithm for the
fused lasso and L0-segmentation”, published in JCGS in 2013).

(a) [8 points] Implement generalized gradient descent to solve problem (4), using the prox
function given to you in C++ code, linked from the course website as “prox R.cpp” and
“prox matlab.cpp” for use in R and Matlab, respectively. Use backtracking to determine the
step size at each iteration, and stop when the difference in criterion value across iterations is
less than a user-specified tolerance level. Hence (aside from z, λ) your function should take
as inputs: an initial step size s(0) before backtracking, a backtracking update parameter γ,
and a tolerance level ε.

(Hint: R users, compile this code using by running R CMD SHLIB prox R.cpp from the
command line. This will give you the file “prox R.so”. Then use the provided code “prox.R”
to access the prox function from R.

Matlab users: compile the code by running mex prox matlab.cpp inside the Matlab com-
mand window. Then use the provided code “prox.m” to access the prox function from
Matlab.)

(b) [6 points] Run your generalized gradient descent implementation on the binary sequences
data, provided in “binseq.txt”. Run generalized gradient descent over 80 values of λ between
0.001 and 200, equally spaced on the log scale. (Note: in R, these are given by lams =

exp(seq(log(0.001), log(200), length=80)), and in Matlab, lams = exp(linspace(

log(0.001), log(200), 80));.) Starting from the largest λ value to the smallest, run
generalized gradient using both warm starts (starting from the previously computed solu-
tion), and using cold starts (starting from β = 0). For the rest of the parameter values, use
s(0) = 1, γ = 0.8, ε = 1e− 6.

For each strategy (warm/cold starts), record the total number of prox evaluations performed
by the algorithm at each value of λ. Remember that the prox evaluation is more or less the
fundamental unit of computation for generalized gradient descent. Plot the number of prox
operations taken by the algorithm as a function of λ, overlaying the curves for both warm
and cold starts. Do you see a difference? And more broadly, what do the curves portray
about the difficulty of solving the problem (4) as a function of λ?

(c) [6 points] Do the same as in (b), but using your barrier method implementation from
Problem 3. (For the parameters τ (0), µ, . . ., use the same values as in Problem 3.)

Now, for the barrier method, you will record the number of Newton iterations (i.e., linear
system solves) at each λ value, this being its fundamental unit of computation. Also, you
will solve the problems starting at the smallest value of λ and working your way up to the

9

largest (note that in the other direction, the warm starts would not be feasible). Produce
the same plot and address the same questions as in (b).

(d) [5 points] Make comparisons between the two algorithms (barrier method and general-
ized gradient). We are leaving this open-ended on purpose; you can make both high-level
qualitative, and quantative comparisons; e.g., you might find it useful to look at the criterion
values produced by solutions from each method, as a function of λ.

(Bonus) [5 points] Using whatever algorithm you find more efficient/accurate, devise a prin-
cipled method for selecting an appropriate value of λ for the binary sequence data (it can’t
involve looking at the solutions by eye!). What value of λ does your method choose? Plot
the corresponding underlying probabilities.

10

	Mastery set [20 points] (Yifei)
	Safe rules for the LASSO [25 points] (Adona)
	Binary sequences of piecewise constant expectation [30 points]
	Statistical estimation and penalty methods [25 points] (Sashank)
	Binary sequences revisited [25 points]

