
Convex Optimization 10-725/36-725
Homework 5, due Nov 26

Instructions:

• You must complete Problems 1–3 and either Problem 4 or Problem 5 (your choice
between the two).

• When you submit the homework, upload a single PDF (e.g., produced by LaTeX, or
scanned handwritten exercises) for the solution of each problem separately, to black-
board. You should your name at the top of each file, except for the first problem. Your
solution to Problem 1 (mastery set) should appear completely anonymous
to a reader.

1 Mastery set [25 points]

A. [3+3+4] What are the subgradients of the function

f(x) = max
i=1,...m

aTi x+ bi?

What about, for fi, i = 1, . . .m, convex,

f(x) = max
i=1,...m

fi(Aix)?

And finally
f(x) = max

i=1,...m
‖Aix‖pi ,

where each pi ≥ 1?

B. [2+2] Let C be a convex set. Consider the projection of x onto C; prove that x projects
to a unique element of C. (Hint: write as an optimization problem.) What happens when
C is nonconvex? (Hint: draw a picture.)

D. [1] Can a linear program ever be nonconvex? Why or why not?
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E. [2+2+2+4] Derive the conjugates of f(x) = ax + b, f(x) = ex, and f(x) = x log x. Let
‖ · ‖ be an arbitrary norm. Derive the conjugate of f(x) = ‖x‖2/2.

Bonus. [5] Is the projection operator onto a convex set differentiable? Why or why not?

2 PSD Matrices (Adona) [25 points]

Part A [15 points]: Basic properties of PSD matrices

Assume X ∈ Rn×n is a symmetric PSD matrix.

1. [3 points] Let I ⊆ {1...n} be an index set. Prove that XI is also PSD for all I, where
XI is the submatrix formed by choosing all rows and columns from index-set I.

2. [3 points] Using the above, prove that for any i, j, we have XiiXjj ≥ X2
ij. As a

corollary, prove the property (from class) that Xii = 0 implies that the entire i-th row
and column must be zero.

3. [3 points] Using the eigenvalue decomposition, prove that the determinant of X is the
product of its eigenvalues.

4. [6 points] Prove that if X :=

(
A B
BT C

)
then X � 0 is psd iff A � 0 and C −

BTA−1B � 0.

HINT: Show that if X = Y TZY for some invertible matrix Y , then X > 0 iff Z > 0.

Now, can you decompose X as

X = Y T

(
A 0
0 C −BTA−1B

)
Y

for some matrix Y ?

Part B [10 points]: Formulating problems as SDPs

Using the above property (and others), formulate the following problems as SDP.

1. Let G = (V , E) denote a graph. Assume |V| = n and |E| = m. Let we > 0 denote the
weight of edge e and T = {(s1, t1), . . . , (sk, tk)} be a set of node pairs. Consider the
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following problem:

min
x

1

4

∑
(u,v)∈E

we‖xu − xv‖2

‖xu − xv‖2 + ‖xv − xw‖2 ≥ ‖xu − xw‖2 ∀u, v, w ∈ V
‖xsi − xti‖2 = 4 ∀(si, ti) ∈ T
‖xu‖2 = 1 ∀u ∈ V

where xu ∈ Rn.

2. Consider the following set

P = {P ∈ Rn×m : ‖pi − ci‖ ≤ di}.

where ci ∈ Rn denotes the ith column of C and di ∈ R+. Let B be a given n × m
matrix with full column rank. Assume P>B + B>P is positive definite for all P ∈ P .
Consider the following problem:

min
P

tr
(
P (Im + P>B +B>P )−1P>

)
subject to P ∈ P .

Here Im denotes the m×m identity matrix.

3 Mixed Images (25 Points)

Due to a terrible mistake four of my images got mixed on my hardrive. You can see them
in Figure 1, and they can be downloaded from http://www.stat.cmu.edu/~ryantibs/

convexopt/homeworks/mixedimages.zip. The images are black and white, and their size
is 600 × 1000 pixels. I know that the mixing process was linear, i.e. the pixel values of the
ith mixed image at location (x, y) were generated by the following equation

MixedImagei(x, y) =
4∑

j=1

αijOriginalImagej(x, y), (i = 1, . . . , 4).

I do not remember αij, and I did not keep the original images either.

Your task is to implement the FastICA algorithm and estimate the original images. You
need to submit your implementation and the estimated images. More information about the
FastICA can be found here: http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.

pdf. You can choose its parameters as you wish, I just need my images.

In Matlab you can use the “imread” and “imagesc” commands to read and display im-
ages.
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Figure 1: Mixed images.

4 Advanced Theory

Part A [15 points] Maximum Likelihood Estimation for Multivariate Gaussians

A multivariate Gaussian distribution parametrized by the mean µ ∈ Rd and the covariance
matrix Σ ∈ Sd

++ is:

N (x;µ,Σ) =
1

(2π)
d
2

√
det Σ

exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

1. [3 points] Given n independent draws xi ∈ Rd, i = 1, . . . , n, derive an explicit form for
the log likelihood:

`(µ,Σ) =
n∑

i=1

logN (xi;µ,Σ).

Notice the dependency on observations is omitted.

2. [5 points] Using matrix differential operators, find out the derivative of `(µ,Σ) in terms
of µ and Σ.

3. [1+3+1 points] Define the following:

g(Σ) = log det(Σ) , hi(µ,Σ) = (xi − µ)>Σ−1(xi − µ).

Show that g(Σ) is a concave function. Use a similar technique to show that hi(µ,Σ) is convex
on the concatenation of joint (µ1, . . . , µd,Σ11, . . . ,Σd1, . . . ,Σdd)

> on its feasible region. What
can you conclude about the Gaussian log likelihood, as a function µ and Σ? Is it concave,
convex, neither?

[Hint: check out the proof for log concavity of the determinant of a positive definite matrix
in Chapter 3.1.5, Boyd & Vandenberghe. Convex Optimization.]

4. [2 points] What is the maximum likelihood estimator for the multivariate Gaussian
distribution?

Part B [10 points]
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Recall that a zero-mean, P -dimensional Gaussian distribution is defined by its covariance
matrix Σ. So ‘learning’ such a distribution from some iid samples X = {X(1), . . . , X(N)}
amounts to an estimate Σ̂ of Σ. Since we have an i.i.d. sample from a known family
of distributions, a natural approach is to pick the Σ̂ which maximizes the likelihood of
the sample. However, if N < P , the estimate is not well-defined. Further, even if N ≥
P but N and P are of comparable size, the maximum likelihood estimate can have high
variability, leading to bad predictive performance. Since P is big, we are inclined to restrict
attention to sparse distributions, for some appropriate notion of sparsity. A tempting, but
unrealistic, kind of sparsity is independence of a large number of the features i and j:
Σij = EX∼N(0,Σ)(XiXj) = 0. A more realistic kind of sparsity is conditional independence
of features i and j given the other features. Since the distribution is Gaussian, this happens
when Σ−1

ij = 0. Since our sparsity belief/assumption concerns Σ−1, let’s orient our notation
around that, starting with the log-likelihood function, which can be shown to be:

`(K) = log det(K)− tr(SK)

where K is a symmetric positive semidefinite P × P matrix meant to estimate Σ−1, S is
the empirical covariance matrix S = 1

N−1

∑N
i=1(Xi − X̄)(Xi − X̄)T and the sample mean

X̄ = 1
N

∑N
i=1Xi. The maximizer of `(K) is generally ill-defined and non-sparse, and so

one considers the following `1 penalized estimator (and the problem is lovingly called the
graphical lasso):

min
K�0
− log det(K) + Tr(SK) + λ

∑
i 6=j

|Kij|

3 points Write down the subgradient method’s update equations.

4 points Write down the proximal gradient update equations.

3 points Can you accelerate this? If yes, write down the update equations. If no, why not?

5 Graph Lasso (25 points)

Please read Q4(b) for an introduction to the graph lasso problem. There, you will prove
that if you want to learn a sparse inverse covariance matrix K from data X ∈ RN×P , then
maximizing the likelihood corresponded to solving the optimization problem

min
K�0
− log det(K) + Tr(SK) + λ

∑
i 6=j

|Kij|

where S ∈ RP×P is the sample covariance matrix (assuming that you don’t penalize diagonal
elements). In the previous question, you could use your mastery of matrix differentials to
derive a good primal algorithm to solve this problem quickly. If you didn’t do it, think about
it for a second now.
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First, you will be the TA and generate data for your problem (to know how to run your
own simulations, and to know what it’s like to TA this class). We need to generate random
draws from a gaussian distribution that has a sparse inverse covariance matrix. How do we
come up with a sparse PSD matrix that is not just any PSD matrix, but also its inverse is
consistent with a (probably dense) covariance matrix that encodes correlations? We’ll do
some hacky stuff.

Choose a reasonable value for P (and N) that you think your algorithm will scale to without
making your life miserable (for eg: N=250, P=25 is probably conservative). Generate N
points from a P -dimensional standard gaussian, and calculate the empirical inverse covari-
ance matrix. Threshold this entrywise at some reasonable value γ, to get a sparse matrix
iT . This will be the unknown (to your algorithm) truth. Invert this to get a (probably
dense) covariance matrix T . Now, generate N points from a P -dimensional gaussian with
covariance matrix T . Call its sample inverse covariance iS, and its sample covariance S
(either the datapoints or S is the input to your algorithm). Caution: Thresholding at γ is
not guaranteed to preserve PSD-ness, ie iT may not be PSD. In this case, you can try again,
or you can add a small constant times the identity matrix to make it PSD.

3 points Submit your data-generating code as text in your answer. What N , P , γ did you use?

2 points Plot the sparsity pattern of zero elements vs non-zero elements in iT and iS using
imagesc. This are respectively where the data came from, and your sample estimator
from the data.

In this question, we will derive a dual for this problem, and perform dual ascent. Remember
that a lot of the matrices are symmetric by definition.

1 points Introduce a new constraint (name the new variable Z), as we have often done and write
down the Lagrangian (name the dual variable W).

4 points Show clearly (not lengthily, but convincingly) that the dual is

max
W∈Rp×p

log det(S +W ) s.t. Wii = 0 and |Wij| ≤ λ∀i 6= j

We will use projected gradient ascent with backtracking line search to perform dual ascent.
ALTERNATELY, you can run any other algorithm of your choice on the dual, but submit
a solution that describes your algorithm and has the same amount of detail as below.

You will run the algorithm while the duality gap is smaller than ε or till the iteration count
crosses MAXITER (choose a reasonable value for both! For eg: for the gap, 10−8 is aiming
too high but 10−1 is trivial).

4 points Show that the duality gap at any dual feasible point W is η = Tr(SK)+λ
∑

i 6=j |Kij|−n
for an appropriate K. What did you choose for ε or MAXITER?

1 points Why is the suggested algorithm better suited to the dual than the primal?
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Run a simple backtracking line search with a reasonable initial stepsize t0 to find any point
that is better than the current point, and cutting your stepsize by δ < 1 at every step till
you do so (remember that you are ascending). Whenever you evaluate the function while
backtracking, it needs to be at a feasible point, hence you need to take a (possibly large)
step and then project and then evaluate. Again t0 = 20 or δ = 0.001 are probably not great
choices, just be reasonable.

4 points Implement your algorithm! Submit your code as text in the answer. Avoid using
unnecessary functions. What did you choose for t0, δ?

3 points Plot the sparsity pattern of zero elements vs non-zero elements in your final inverse
covariance matrix using imagesc for a good value of λ. (Warning: MATLAB often
faces rounding issues - many of the elements may be zero upto very high precision but
appear nonzero in your plot - threshold them at some tiny value to avoid this problem)

3 points Choose any two other sensible and revealing values of λ and provide the sparsity pattern
- does it make sense to you? How long did your algorithm take to run, in terms of time
and number of iterations?

This problem is intentionally left open ended, and hence there is no single correct answer,
but plenty of reasonable answers. If your simulated example and parameter choices don’t
demonstrate that the algorithm works, then you should go back and think of what you did
wrong. Too few samples and hence S is hardly informative? Algorithm hitting MAXITER
and hence too conservative steps? Too low γ and too high λ simultaneously?

It is the last advanced implementation question and while the implementation itself is not
hard at all, but we wanted you to think about what kind of choices you would make, because
in real-life there won’t be a TA around to hand you tuning parameters, and you must be
your own TA!
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