Convex Optimization CMU-10725

2. Linear Programs

Barnabás Póczos & Ryan Tibshirani

Administrivia

Please ask questions!

- □ Lecture = 40 minutes part 1 5 minutes break 35 minutes part 2
- □ Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/
- Anonym feedback survey will be on black board next week.
 Please use it! Constructive feedback and suggestions are always welcome!
- □ Subscribe for scribing!

□ My office hour is after the class.

Basic Definitions

□ More and more complicated optimization problems

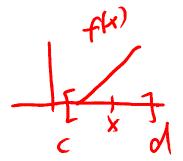
□ Definition of LP

Simplest Optimization Problems

- Goal: MIN f(x) OR MAX f(x)
- Constant function f(x) = c
- 1-dim linear function

 $f(x) = a \times + b$

1-dim linear function with bound constraints



Linear Programs

n-dim linear function with m linear constraints

Inequality form:

Cost function: $C_1 X_1 + C_2 X_2 + ... + C_n X_n$

Constraints:
S, T
$$a_{11} \times 1 + a_{12} \times 2 + - + a_{1n} \times n \leq b_{1}$$

 $a_{11} \times 1 + a_{12} \times 2 + - + a_{1n} \times n \leq b_{1n}$
 $a_{11} \times 1 + a_{12} \times 2 + - + a_{1n} \times n \leq b_{1n}$
Bounds:
 $b_{11} \leq x_{11} \leq u_{11}$
 $b_{11} \leq x_{12} \leq u_{11}$
 $b_{11} \leq u_{12} \leq u_{12}$
 $b_{11} \leq u_{12} \leq u_{12} \leq u_{12}$
 $b_{11} \leq u_{12} \leq u_{12} \leq u_{12} \leq u_{12} \leq u_{12}$

Linear Programs

Inequality form using matrix notation:

CTX XERN Cost function: AxEl LER AERNX Constraints: Bounds: & LXEN $C = [-2, -1]^T$ $b = [5, 4]^T$ min $-2\lambda_1 - x_2$ 9.T. $X_1 + X_2 \leq 5$ $2\lambda_1 + 3\lambda_2 \leq 4$ Example: A-5[25] ×17,0 ×270

Goal of this (...and next) lecture(s)

□ To be able to solve Linear Programs

Simplex Algorithm (Phase I and Phase II) (Later we will see other algorithms too)

Understand why LP is useful

- Motivation
- Applications in Machine Learning

Understand the difficulties

- Convergence? Polynomial or Exponential many operations?
- Will algorithms find the exact solutions, or only approximate ones?

Table of Contents

□ Motivating Examples & Applications:

Pattern classification

□ Linear programs:

- standard form
- canonical form

□ Solutions:

Basic, Feasible, Optimal, Degenerate

□ Simplex algorithm:

- Phase I
- Phase II

Linear Programs

- Motivation
- □ History
- □ Sketching LP

History

Dantzig 1947 (Simplex method)

(one of the top 10 algorithms of the twentieth century)

Motivated by World War II:

□ Job scheduling (Assign 70 men to 70 jobs)

□ Blending problem

(produce a blend (30% Lead, 30% Zinc, 40% Tin) out of 9 different alloys (different mixture, different costs) such that the cost is minimal)

□ Network flow optimization (Max flow min cut)

The product mix problem

A furniture company manufactures four models of desks Number of man hours and profit:

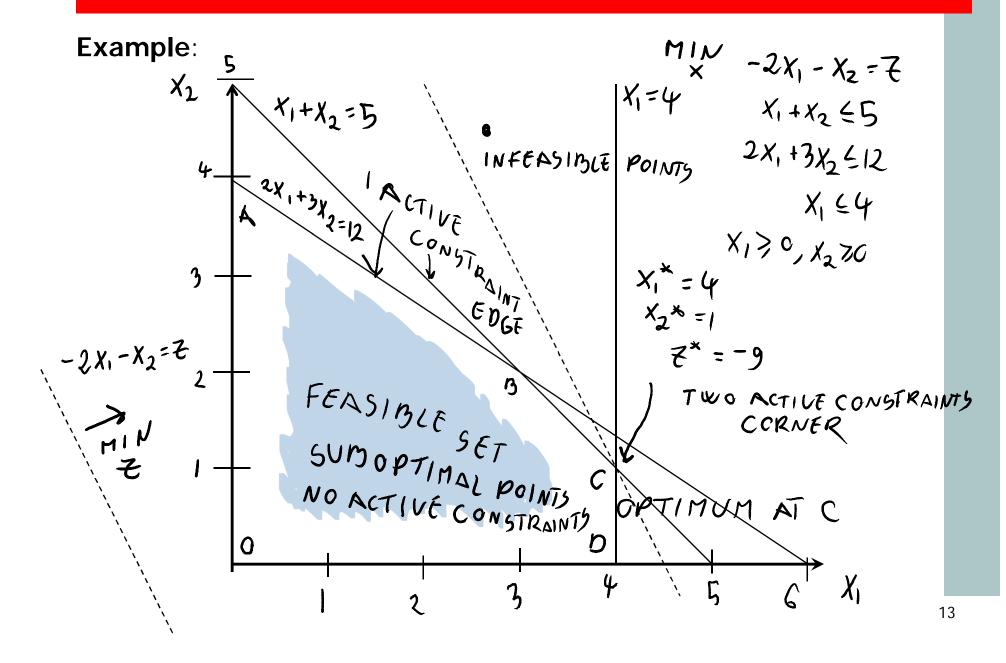
	Desk 1	Desk 2	Desk 3	Desk 4	Available hrs
Carpentry shop hrs	4	9	7	10	6000
Finishing shop hrs	1	1	3	40	4000
Profit	\$12	\$20	\$18	\$40	
$X_1 \ge 0$ $X_2 \ge 0$, $X_3 \ge 0$, $X_4 \ge 0$, $X_5 \ge 0$, $X_6 \ge 0$ MAX PROFIT = 12 X_1 + 20 X_2 + 18 X_3 + 40 X_4 9.T. $4X_1 + 9X_2 + 7X_3 + 10X_4 + X_5 \le 6000$ $X_1 + X_2 + 3X_3 + 40X_4 + X_6 \le 4000$					

Why is it called Linear Programing???

Motivation: Why Linear Programing?

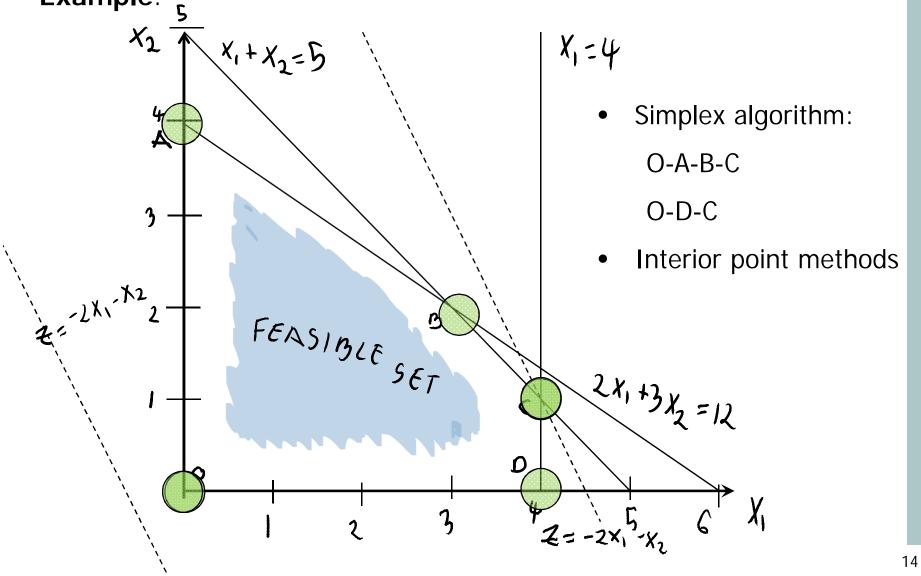
- □ The simplest, nontrivial optimization problem
- Many complex system (objective and constraints) can be well approximated with linear equations
- □ Important applications
- □ There are efficient toolboxes that can solve LPs

Sketching Linear Programs

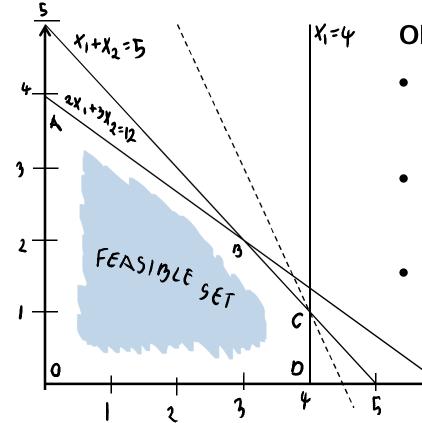


Simplex Algorithm

Example:



Linear Program



Observations, Difficulties:

- Feasible set might not exist, no solution (Inconsistency in the constraints)
- Infinite many global optimum (Optimum is on an edge)
- Optimum can be –1, 1

(Unbounded optimum)

Linear Program

High dimensional case is similar:

faces, facets instead of edges cost function = hyperplane

Applications

Pattern Classification via Linear Programming

Application

Pattern Classification via Linear Programming

More info can be found on: cgm.cs.mcgill.ca/~beezer/cs644/main.html

Goal: show how LP can be used for linear classification.

Why LP?

There are many efficient LP solver software packages

Formal goal:

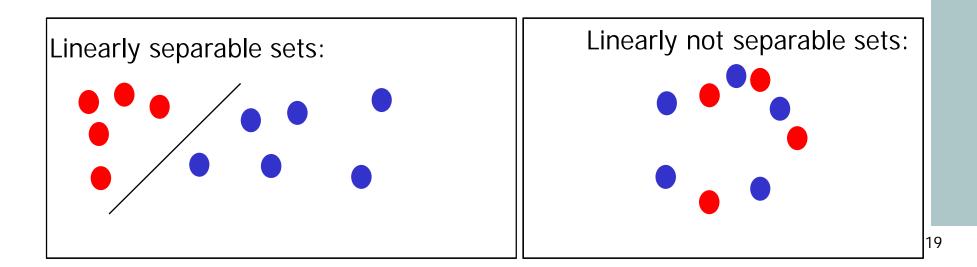
rmal goal:

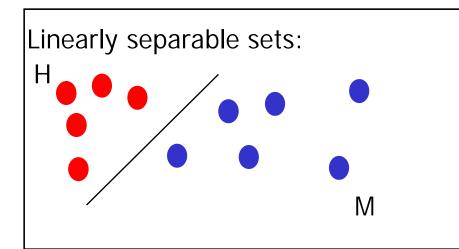
$$GIVEN H = \{H', H^2, ..., H^n\} CR^n$$

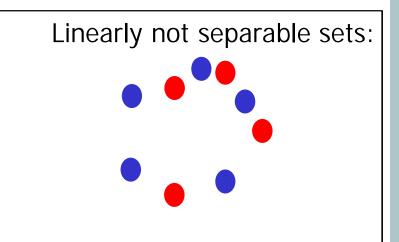
 $M = \{H', H^2, ..., H^m\} CR^n$

Problem 1: Determine whether H and M are linearly separable

Problem 2: If H and M are linearly separable, then find a separating hyper plane







Observation:

H and M are linearly separable

$$= \exists a \in \mathbb{R}^{n}, \quad H \subseteq \{x: a^{T} \times \mathcal{I}^{T}\}$$

$$= \bigcup_{k \in \mathbb{R}} \bigcup_{x \in \mathbb{R}^{n}} M \subseteq \{x: a^{T} \times \mathcal{I}^{T}\}$$

21

Lemma 1:

H and M are linearly separable
$$(=) \exists a \in \mathbb{R}^n \leq \tau, a^T H^i - b > + 1 \forall i = 1. h$$

 $(=) \exists b \in \mathbb{R} \quad a^T H^j - b \leq -1 \forall j = 1. h$

Proof continued

$$= \sum LET P \doteq \min CTX - \max CTX > 0$$

$$x \in H \qquad x \in M$$

$$a \doteq 2 = c \quad b \doteq 1 \quad [\min CTX + \max cTX] \\ p \quad x \in H \qquad x \in M \qquad]$$

$$Now, \quad \min a \quad TX \quad \min 2 \quad cTX = \min 1 \quad [cTX + \max cTX] \\ x \in H \qquad = 1 \quad [\min CTX + \max cTX + p] \\ = 1 \quad [\min CTX + \max cTX + p] = 0.1$$

$$\min a \quad TX = 0.1$$

$$\min a \quad TX = 0.1$$

Proof continued

$$= \int LET P \doteq \min C^{T}x - \max C^{T}x > 0$$

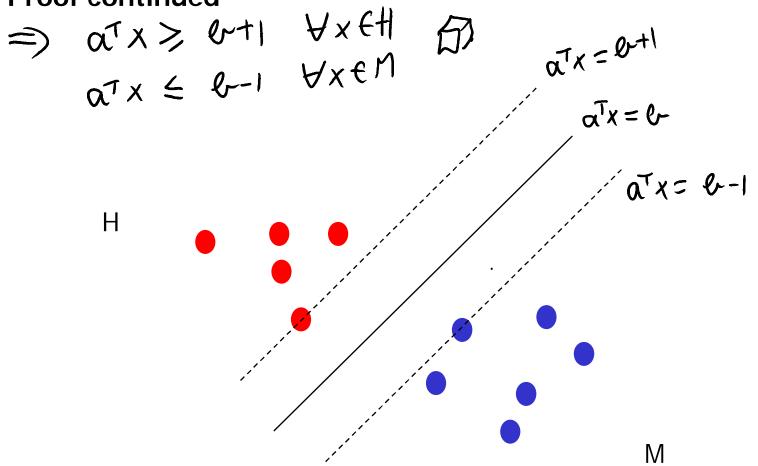
$$x \in H \qquad x \in M$$

$$LET \quad a \doteq \frac{2}{P} C \in IR^{n}, \quad b \doteq \frac{1}{P} \begin{bmatrix} \min C^{T}x + \max C^{T}x \\ x \in M \end{bmatrix}$$
Similarly, $\max a^{T}x = \max \frac{2}{P} c^{T}x = \frac{1}{P} \begin{bmatrix} \max c^{T}x + \max c^{T}x \\ x \in M \end{bmatrix}$

$$= \frac{1}{P} \begin{bmatrix} -P + \min C^{T}x + \max c^{T}x \\ x \in H \end{bmatrix} = -1 + b$$

$$= \sum \max a^{T}x = b^{-1}$$

Proof continued



We will see that the following linear problem solves Problem 1 & 2:

GIVEN SETS
$$H = \{H', H^2, ..., H^h\} \in \mathbb{R}^n$$
 [Mansgarian 1995]
 $M = \{H', M^2, ..., N^m\} \in \mathbb{R}^n$
FIND $M \in \mathbb{R}^h, Z \in \mathbb{R}^m$, $\alpha \in \mathbb{R}^n$, $\psi \in \mathbb{R}$ SUCH THAT

FIND
$$\mathcal{M} \in \mathbb{R}^{k}, \mathcal{Z} \in \mathbb{R}^{m}, \alpha \in \mathbb{R}^{n}, \psi \in \mathbb{R}$$
 SUCH THAT

$$\underset{k}{\text{MIN}} \frac{1}{k} [\mathcal{M}_{1} + \mathcal{M}_{2} + ... + \mathcal{M}_{R}] + \frac{1}{m} [\mathcal{Z}_{1} + \mathcal{Z}_{2} + ... + \mathcal{Z}_{m}]$$

$$\underset{k}{\text{MER}}^{k} \quad \varsigma.T. \quad \mathcal{M}_{i} \geq -\alpha T H^{i} + \psi + I \quad \mathcal{H}_{i} = I \dots \mathcal{R}$$

$$\mathcal{Z} \in \mathbb{R}^{m} \qquad \mathcal{Z}_{j} \geq \alpha T M^{j} - \psi + I \quad \mathcal{H}_{j} = I \dots \mathcal{M}$$

$$\alpha \in \mathbb{R}^{n} \qquad \mathcal{Z}_{j} \geq \alpha T M^{j} - \psi + I \quad \mathcal{H}_{j} = I \dots \mathcal{M}$$

$$\mathcal{Z} \in \mathbb{R} \qquad \mathcal{M}_{i} \geq 0 \quad \forall i = I \dots \mathcal{R}$$

$$\mathcal{Z}_{j} \geq 0 \quad \forall i = I \dots \mathcal{R}$$

$$\mathcal{Z}_{j} \geq 7, 0 \quad \forall j = I \dots \mathcal{M}$$

Theorem 1

H and M are linearly separable iff the optimal value of LP is 0.

Theorem 2

H and M are linearly separable y^{*}, z^{*}, a^{*}, b^{*} is an optimal solution of (LP)

FIND
$$\mathcal{M} \in \mathbb{R}^{h}, \mathcal{Z} \in \mathbb{R}^{m}, \mathcal{A} \in \mathbb{R}^{n}, \mathcal{U} \in \mathbb{R}$$
 SUCH THAT

$$\begin{array}{l} \operatorname{MIN} \frac{1}{h} \left[\mathcal{M}_{1} + \mathcal{M}_{2} + \ldots + \mathcal{M}_{n} \right] + \frac{1}{m} \left[\mathcal{Z}_{1} + \mathcal{Z}_{2} + \ldots + \mathcal{Z}_{m} \right] \\ \mathcal{M} \in \mathbb{R}^{n} \quad \text{S.T.} \quad \mathcal{M}_{i} \geq -\alpha^{T} H^{i} + \omega + 1 \quad \mathcal{H}_{i} = 1 \dots \mathcal{R} \\ \mathcal{Z} \in \mathbb{R}^{m} \quad \mathcal{Z}_{j} \geq \alpha^{T} M^{j} - \omega + 1 \quad \mathcal{H}_{j} = 1 \dots \mathcal{M} \\ \mathcal{A} \in \mathbb{R}^{n} \quad \mathcal{M}_{i} \geq 0 \quad \mathcal{H}_{i} = 1 \dots \mathcal{R} \\ \mathcal{Z}_{j} \mathcal{T}_{j} \quad \mathcal{V}_{j} = 1 \dots \mathcal{M} \\ \mathcal{Z}_{j} \mathcal{T}_{j} \quad \mathcal{V}_{j} = 1 \dots \mathcal{M} \end{array}$$

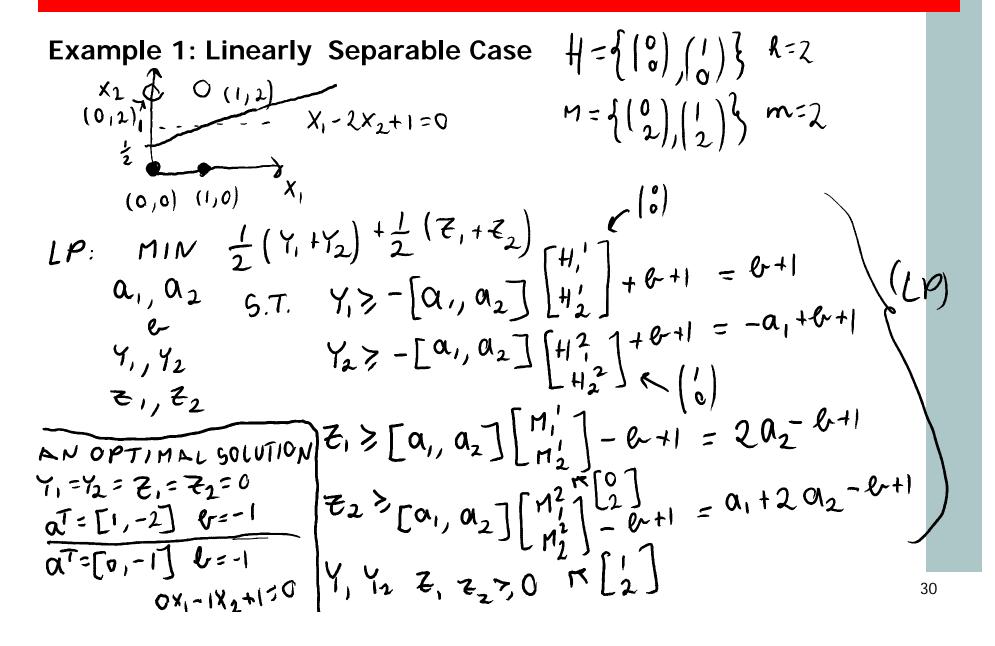
Proof of Theorems 1 and 2 The optimal value of (LP) is 0 = 0 $a^{+} = 0$ $a^{+} = 0$ $a^{+} = 0$ $a^{+} + 1 \quad \forall i = 1... h$ $a^{-} H^{-} \leq b^{+} + 1 \quad \forall j = 1... h$ (LP)

Application: Breast Cancer Diagnosis

Used at the University of Wisconsin Hospital [Mangasarian et al 1995]

- 1. Fluid sample from breast.
- 2. Placed on a glass and stained the highlight the nuclei of cells
- 3. Image is taken
- 4. 30D features: Area, Radius, perimeter, etc

Goal: Classification between benign lumps and malignant lumps Results: 97.5% accuracy



Example 2: Linearly nonseparable case $H = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ a \end{pmatrix} \}$ $M = \{ \begin{pmatrix} 0 \\ a \end{pmatrix} \end{pmatrix} \{ \begin{pmatrix} 0 \\ a \end{pmatrix} \end{pmatrix} \{ \begin{pmatrix} 0 \\ a \end{pmatrix} \}$ $\begin{array}{c} \begin{pmatrix} (1,2) \\ (0,2) \\ (0,2) \\ (1,0) \\ (1,0) \\ \end{array} \end{array} \right) \begin{array}{c} MIN \frac{1}{2} (Y_{1} + Y_{2}) + \frac{1}{2} (Z_{1} + Z_{2}) \\ Y_{1}Y_{2} Z_{1}Z_{2} \\ a_{1}e_{2} \\ a_{2}e_{3}e_{4} \\ S.T Y_{1} \ge -[\alpha_{1}\alpha_{2}] \begin{bmatrix} H_{1} \\ H_{2} \\ H_{2} \end{bmatrix} + e_{1}H_{1} = e_{1}H_{1} \\ H_{2} \\ \end{array}$ (٥,٥) (٥,٥)

Linear Programs

- □ Standard from, Canonical form, Inequality form
- □ Transforming LPS
 - Pivot transformation

Linear Programs

Inequality form of LPs using matrix notation;

X > O

Theorem: Any LP can be rewritten to an equivalent standard LP

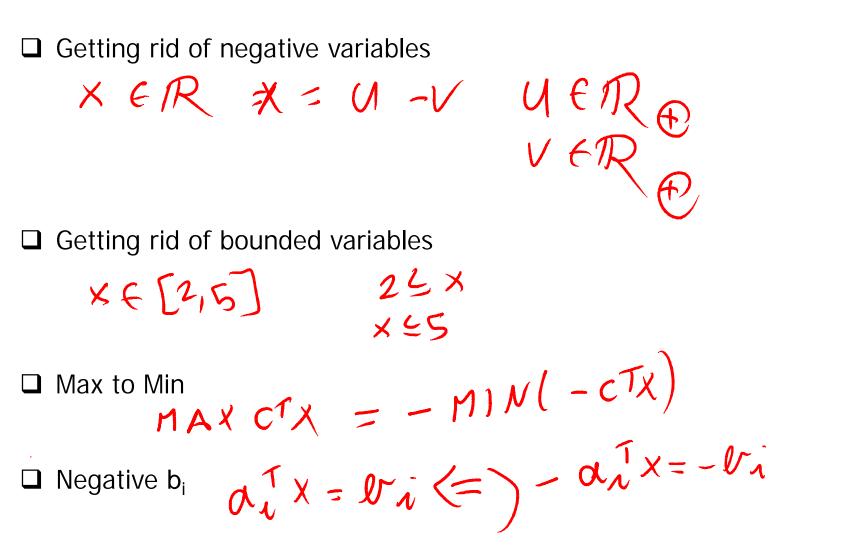
Transforming LPs

Theorem: Any LP can be rewritten to an equivalent standard LP

□ Getting rid of inequalities (except variable bounds) $X_1 + X_2 = 4 \implies x_1 + X_2 + X_3 = 4$ $X_3 \ge 0$

Getting rid of equalities $x_1 + x_2 = 4$ $(=) x_1 + x_2 > 4$ ≤ 4

Transforming LPs



From Inequality Form to Standard Form

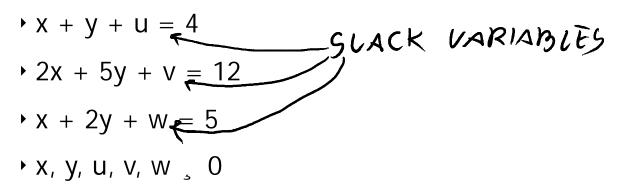
Inequality form

max 2x+3y s.t. • x + y · 4 • 2x + 5y · 12 if std fm has n vars, m eqns, $\cdot x + 2y \cdot 5$ then ineq form has • x, y _ 0 n–m vars and m+(n–m)=n ineqs

Standard form

(here m = 3, n = 5)

max 2x+3y s.t.



36