Convex Optimization CMU-10725

2. Linear Programs

Barnabás Póczos & Ryan Tibshirani

Administrivia

- Please ask questions!
- ☐ Lecture = 40 minutes part 1 5 minutes break 35 minutes part 2
- ☐ Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/
- Anonym feedback survey will be on black board next week.
 Please use it! Constructive feedback and suggestions are always welcome!
- ☐ Subscribe for scribing!
- My office hour is after the class.

Basic Definitions

- More and more complicated optimization problems
- ☐ Definition of LP

Simplest Optimization Problems

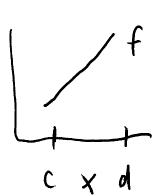
Constant function

1-dim linear function $f(x) = \alpha x + 6$

$$\begin{array}{cccc}
x & x & x \\
x & x & x
\end{array}$$

$$\begin{array}{cccc}
x & x & x \\
x & x & x
\end{array}$$





Linear Programs

n-dim linear function with m linear constraints

Inequality form:

Constraints:

5.7.
$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \leq b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \leq b_m$

Linear Programs

Inequality form using matrix notation:

Cost function: MIN [OR MAX]
$$C^TX$$
 CER^n
Constraints: S.T $AXLL$ $AER^{m\times n}$ UER^n

Bounds:
$$\ell \leq \chi \leq U$$
 $\ell \in \mathbb{R}^n$ $U \in \mathbb{R}^n$ $\times \in \mathbb{R}^n$

Example:
$$MIN - 2X_1 - X_2$$

 $6.T \quad X_1 + X_2 \le 5$
 $2X_1 + 3X_2 \le 12$
 $X_1 \ge 0$, $X_2 \ge 0$

$$C = \begin{bmatrix} -2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 6 \\ 12 \end{bmatrix}$$

$$U = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Goal of this (...and next) lecture(s)

□ To be able to solve Linear Programs

Simplex Algorithm (Phase I and Phase II) (Later we will see other algorithms too)

- Understand why LP is useful
 - Motivation
 - Applications in Machine Learning
- □ Understand the difficulties
 - Convergence? Polynomial or Exponential many operations?
 - Will algorithms find the exact solutions, or only approximate ones?

Table of Contents

- Motivating Examples & Applications:
 - Pattern classification
- ☐ Linear programs:
 - standard form
 - canonical form
- **□** Solutions:
 - Basic, Feasible, Optimal, Degenerate
- ☐ Simplex algorithm:
 - Phase I
 - Phase II

Linear Programs

- Motivation
- ☐ History
- ☐ Sketching LP

History

Dantzig 1947 (Simplex method)

(one of the top 10 algorithms of the twentieth century)

Motivated by World War II:

- Job scheduling (Assign 70 men to 70 jobs)
- ☐ Blending problem (produce a blend (30% Lead, 30% Zinc, 40% Tin) out of 9 different alloys (different mixture, different costs) such that the cost is minimal)
- Network flow optimization (Max flow min cut)

The product mix problem

A furniture company manufactures four models of desks Number of man hours and profit:

	Desk 1	Desk 2	Desk 3	Desk 4	Available hrs
Carpentry shop hrs	4	9	7	10	6000
Finishing shop hrs	1	1	3	40	4000
Profit	\$12	\$20	\$18	\$40	

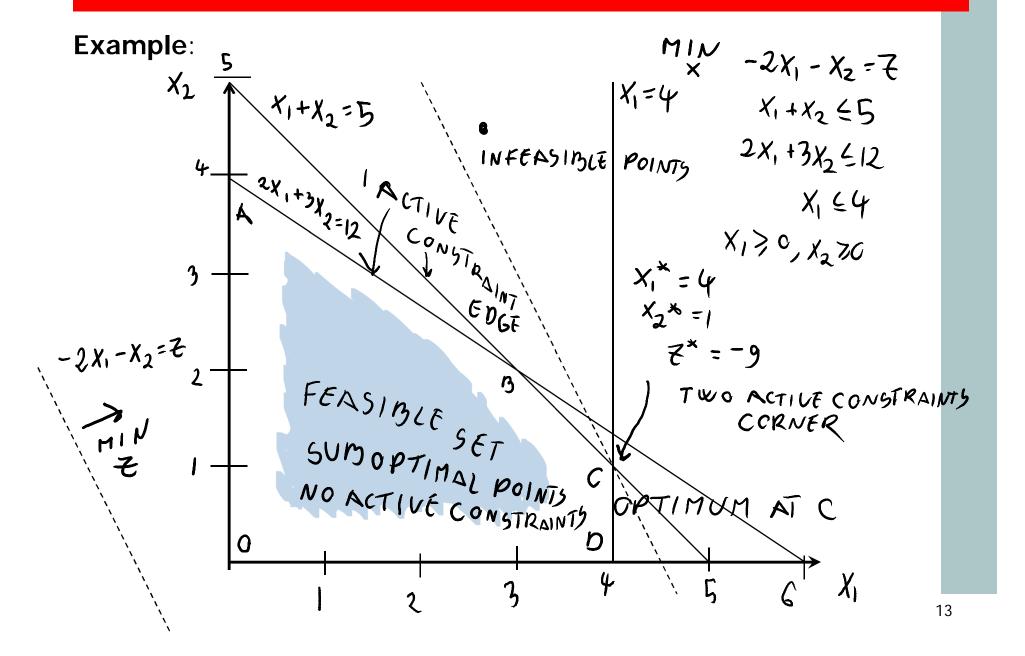
$$X_{1}$$
? O X_{2} >, O, X_{3} O, X_{4} > O, X_{5} O, X_{6} O
 X_{1} PROFIT = 12 X_{1} +2 0 X_{2} + 18 X_{3} +4 0 X_{4}
 Y_{1} + Y_{2} + Y_{3} + Y_{3} + Y_{4} + Y_{5} Y_{6} Y_{7} Y_{7

Why is it called Linear Programing???

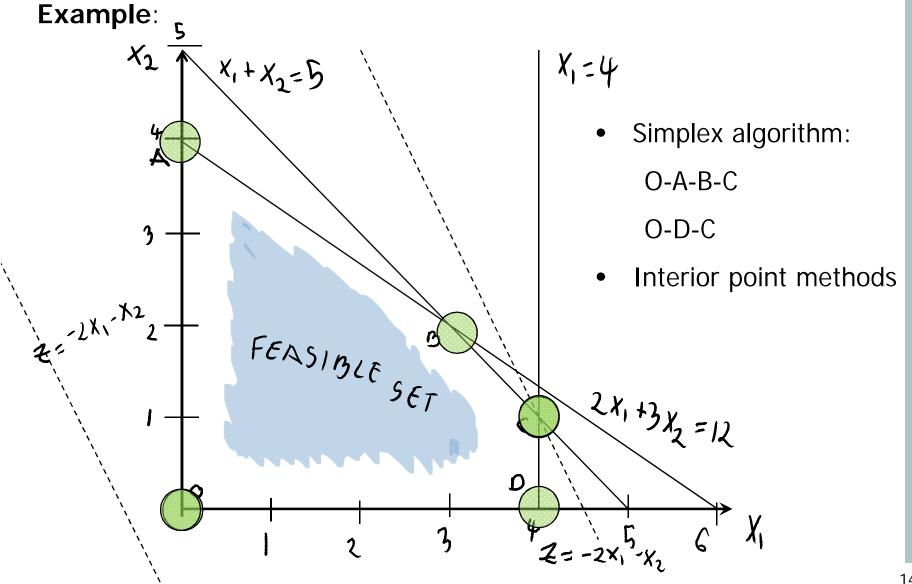
Motivation: Why Linear Programing?

- ☐ The simplest, nontrivial optimization problem
- Many complex system (objective and constraints) can be well approximated with linear equations
- Important applications
- There are efficient toolboxes that can solve LPs

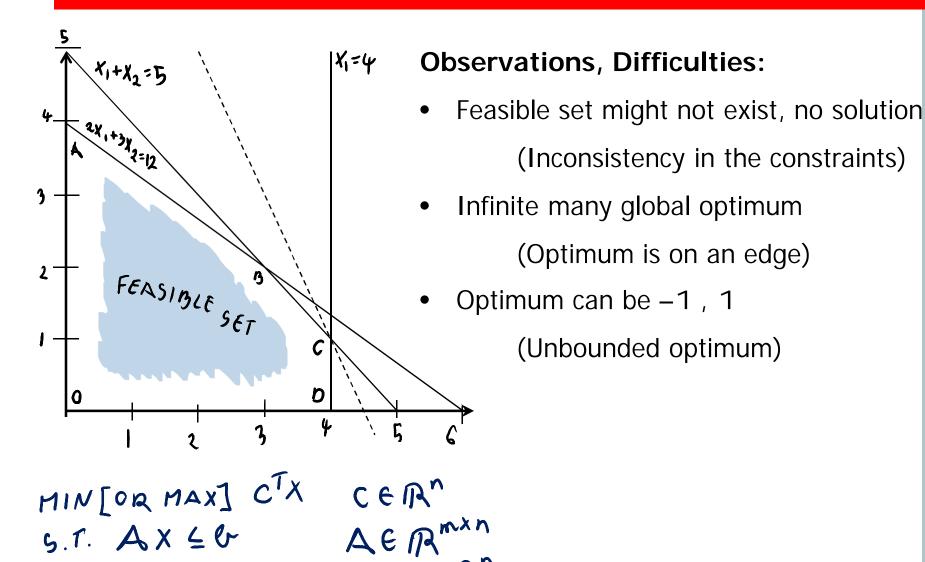
Sketching Linear Programs



Simplex Algorithm



Linear Program



ecxeu

Linear Program

High dimensional case is similar:

faces, facets instead of edges cost function = hyperplane

Applications

Pattern Classification via Linear Programming

Application

Pattern Classification via Linear Programming

More info can be found on: cgm.cs.mcgill.ca/~beezer/cs644/main.html

Goal: show how LP can be used for linear classification.

Why LP?

There are many efficient LP solver software packages

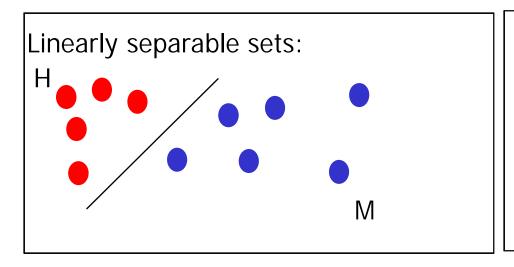
Formal goal:

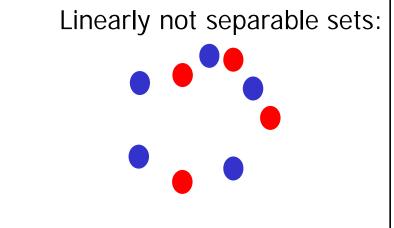
Problem 1: Determine whether H and M are linearly separable

Problem 2: If H and M are linearly separable, then find a separating hyper plane

Linearly separable sets:

Linearly not separable sets:





Observation:

Observation:

H and M are linearly separable
$$\implies \exists \alpha \in \mathbb{R}^n : \pi = \{x \in \mathbb{R}^n : \alpha^T x > b\}$$
 $e \in \mathbb{R}$
 $e \in \mathbb{R}^n : \alpha^T x > b\}$

Lemma 1:

$$H = \{H', H^2, ..., H^k\} \subseteq \mathbb{R}^n$$

 $M = \{M', M^2, ..., M^k\} \subseteq \mathbb{R}^n$

H and M are linearly separable

Proof

: SINCE f(x) = OTX - & SEPARATES H AND M THEREFORE, {X: OTX = &} IS A SEPARATING HYPERPLANE >>> H AND M ARE LINEARLY SEPARABLE.

Lemma 1:

H and M are linearly separable
$$(=)$$
 $\exists \alpha \in \mathbb{R}^n \leq T$, $\alpha^T H^i - \theta \geq H^i = 1... A$

Proof continued

Proof continued

$$= \sum_{x \in H} P = \min_{x \in H} C^{T}x - \max_{x \in H} C^{T}x > 0$$

$$= \sum_{p} C \in \mathbb{R}^{n}, \quad 0 = \frac{1}{p} \left[\min_{x \in H} C^{T}x + \max_{x \in H} C^{T}x \right]$$
Similarly, MAX $d^{T}x = \max_{x \in H} \frac{1}{p} C^{T}x = \frac{1}{p} \left[\max_{x \in H} C^{T}x + \max_{x \in H} C^{T}x \right]$

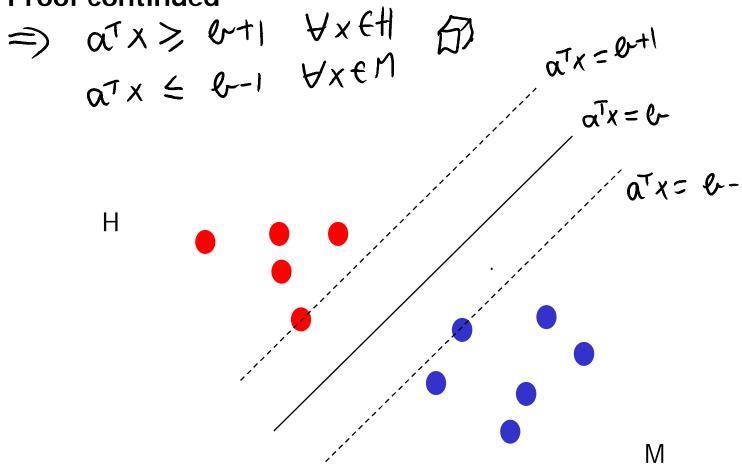
$$= \sum_{p} \left[-P + \min_{x \in H} C^{T}x + \max_{x \in H} C^{T}x \right] = -1 + 0$$

$$= \sum_{p} \left[-P + \min_{x \in H} C^{T}x + \max_{x \in H} C^{T}x \right] = -1 + 0$$

$$= \sum_{p} \max_{x \in H} a^{T}x = 0$$

$$= \sum_{x \in H} a^{$$

Proof continued



We will see that the following linear problem solves Problem 1 & 2:

GIVEN SETS
$$H = \{H', H^2, ..., H^R\} \subseteq \mathbb{R}^n$$
 [Mansgarian 1995]

 $M = \{M', M^2, ..., H^R\} \subseteq \mathbb{R}^n$

FIND $M \in \mathbb{R}^R$, $Z \in \mathbb{R}^m$, $\alpha \in \mathbb{R}^n$, $\omega \in \mathbb{R}$ SUCH THAT

 $MIN = \{M', M_2 + ... + M_R\} + \frac{1}{m} [Z_1 + Z_2 + ... + Z_m]$
 $M \in \mathbb{R}^n$
 $S.T.$
 $S.T$

FIND
$$M \in \mathbb{R}^{h}$$
, $Z \in \mathbb{R}^{m}$, $\alpha \in \mathbb{R}^{n}$, $\psi \in \mathbb{R}$ SUCH THAT)

 $M : \lambda \downarrow [M_{1} + M_{2} + ... + M_{n}] + \frac{1}{m} [Z_{1} + Z_{2} + ... + Z_{m}]$
 $M \in \mathbb{R}^{n}$
 $G \in \mathbb{R}^{n}$

Theorem 1

H and M are linearly separable iff the optimal value of LP is 0.

Theorem 2

H and M are linearly separable y^* , z^* , a^* , b^* is an optimal solution of (LP)

$$f(x)=a^{*T}x+b^*$$
 is a separating hyperplane

FIND
$$M \in \mathbb{R}^{k}$$
, $Z \in \mathbb{R}^{m}$, $\alpha \in \mathbb{R}^{n}$, $\psi \in \mathbb{R}$ SUCH THAT

 $M : \mathcal{N} = [M_{1} + M_{2} + ... + M_{n}] + \frac{1}{m} [Z_{1} + Z_{2} + ... + Z_{m}]$
 $M \in \mathbb{R}^{n}$
 $G \in \mathbb{R}^{n}$

Proof of Theorems 1 and 2

The optimal value of (LP) is
$$0 \Leftrightarrow (1) M^* = 0$$

$$(2) Z^* = 0$$

$$(3) \alpha^* T H^i \geqslant U^* + 1 \forall i = 1... R$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(4) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(5) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(7) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1... T$$

$$(8) \alpha^* T M^j \leq U^* - 1 \forall j = 1..$$

Application: Breast Cancer Diagnosis

Used at the University of Wisconsin Hospital

[Mangasarian et al 1995]

- 1. Fluid sample from breast.
- 2. Placed on a glass and stained the highlight the nuclei of cells
- 3. Image is taken
- 4. 30D features: Area, Radius, perimeter, etc

Goal: Classification between benign lumps and malignant lumps

Results: 97.5% accuracy

Example 1: Linearly Separable Case

$$H = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$$
 $A = 2$
 $M = \{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}$ $m = 2$

LP: MIN
$$\frac{1}{2}$$
 ('
 a_{1}, a_{2} 5.7
 y_{1}, y_{2}
 z_{1}, z_{2}

LP: MIN
$$\frac{1}{2}(Y_1 + Y_2) + \frac{1}{2}(Z_1 + Z_2)$$

$$\alpha_{1}, \alpha_{2} \quad S.T. \quad Y_{1} > - [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1} \\ H_{2} \end{bmatrix} + \theta + 1 = \theta + 1$$

$$Y_{1}, Y_{2} \quad Y_{2} > - [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \begin{bmatrix} H_{1}^{2} \\ H_{2}^{2} \end{bmatrix} + \theta + 1 = -\alpha_{1} + \theta + 1$$

$$Z_{1}, Z_{2} \quad Z_{2} = [\alpha_{1}, \alpha_{2}] \quad Z_{2} = [$$

$$\frac{Z_{1},Z_{2}}{ANOPTIMAL SOLUTION} Z_{1} > [\alpha_{1},\alpha_{2}][M_{1}'] - \omega_{1} = 2\alpha_{2} - \omega_{1} \\
Y_{1} = Y_{2} = Z_{1} = Z_{2} = 0 \\
\alpha^{T} = [1,-2] \quad G = -1 \\
\alpha^{T} = [0,-1] \quad U = -1 \\
Ox_{1} - 1X_{2} + 150$$

$$Y_{1} Y_{2} = Z_{1} = 2\alpha_{2} - \omega_{1} \\
Y_{1} Y_{2} = Z_{2} = 0 \\
Y_{1} Y_{2} = Z_{3} = 2\alpha_{2} - \omega_{1} \\
Y_{1} Y_{2} = Z_{3} = 2\alpha_{2} - \omega_{1} \\
Y_{1} Y_{2} = Z_{3} = 2\alpha_{2} - \omega_{1} \\
Y_{1} Y_{2} = Z_{3} = 2\alpha_{2} - \omega_{1} \\
Y_{2} = Z_{3} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{3} = Z_{3} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{4} Y_{2} = Z_{3} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = Z_{5} = 2\alpha_{1} + 2\alpha_{2} - \omega_{1} \\
Y_{5} = 2\alpha_{1} + 2\alpha_{2} + 2\alpha_$$

Example 2: Linearly nonseparable case $H = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}$ $M = \{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} \} \begin{pmatrix} 0 \\ 2 \end{pmatrix} \}$ (0,0) (1,0)

Linear Programs

- ☐ Standard from, Canonical form, Inequality form
- ☐ Transforming LPS
 - Pivot transformation

Linear Programs

Inequality form of LPs using matrix notation:

Standard form of LPs:

Theorem: Any LP can be rewritten to an equivalent standard LP

Transforming LPs

Theorem: Any LP can be rewritten to an equivalent standard LP

☐ Getting rid of inequalities (except variable bounds)

$$X_1 + X_2 = 4$$
 \Rightarrow $X_1 + X_2 + X_3 = 4$
 $X_3 > 0$
 $X_3 > 0$
 $X_4 + X_2 + X_3 > 0$
 $X_5 > 0$

☐ Getting rid of equalities

$$X_1 + 2X_2 = 4$$
 => $X_1 + 2X_2 \le 4$
 $X_1 + 2X_2 \ge 4$

Transforming LPs

☐ Getting rid of negative variables

$$X \in \mathbb{R} \implies X = U - V \qquad \begin{array}{c} U \geq 0 \\ V \geq 0 \end{array}$$

☐ Getting rid of bounded variables

$$X \in [2,5] \Rightarrow \{2 \leq X \\ \{x \leq 5\}$$

☐ Max to Min

$$MAX C^TX = -MIN(-C)^TX$$

☐ Negative b_i

$$\alpha_i^T x = e_i \iff -\alpha_i^T x = -e_i$$