Convex Optimization CMU-10725

2. Linear Programs

Barnabás Póczos & Ryan Tibshirani

Administrivia

- □ Please ask questions!
- ☐ Lecture = 40 minutes part 1 5 minutes break 35 minutes part 2
- ☐ Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/
- Anonym feedback survey will be on black board next week.
 Please use it! Constructive feedback and suggestions are always welcome!
- ☐ Subscribe for scribing!
- ☐ My office hour is after the class.

Basic Definitions

- More and more complicated optimization problems
- ☐ Definition of LP

Simplest Optimization Problems

Goal:

Constant function

1-dim linear function

1-dim linear function with bound constraints

Linear Programs

-	n-dim	linear	function	with r	m linear	constraints

Inequality form:

Cost function:

Constraints:

Bounds:

Linear Programs

Inequality form using matrix notation:								

Example:

Goal of this (...and next) lecture(s)

□ To be able to solve Linear Programs

Simplex Algorithm (Phase I and Phase II) (Later we will see other algorithms too)

- Understand why LP is useful
 - Motivation
 - Applications in Machine Learning
- Understand the difficulties
 - Convergence? Polynomial or Exponential many operations?
 - Will algorithms find the exact solutions, or only approximate ones?

Table of Contents

- Motivating Examples & Applications:
 - Pattern classification
- ☐ Linear programs:
 - standard form
 - canonical form
- **□** Solutions:
 - Basic, Feasible, Optimal, Degenerate
- ☐ Simplex algorithm:
 - Phase I
 - Phase II

Linear Programs

- Motivation
- ☐ History
- ☐ Sketching LP

History

Dantzig 1947 (Simplex method)

(one of the top 10 algorithms of the twentieth century)

Motivated by World War II:

- ☐ Job scheduling (Assign 70 men to 70 jobs)
- ☐ Blending problem (produce a blend (30% Lead, 30% Zinc, 40% Tin) out of 9 different alloys (different mixture, different costs) such that the cost is minimal)
- Network flow optimization (Max flow min cut)

The product mix problem

A furniture company manufactures four models of desks Number of man hours and profit:

	Desk 1	Desk 2	Desk 3	Desk 4	Available hrs
Carpentry shop hrs	4	9	7	10	6000
Finishing shop hrs	1	1	3	40	4000
Profit	\$12	\$20	\$18	\$40	

Motivation: Why Linear Programing?

- ☐ The simplest, nontrivial optimization problem
- Many complex system (objective and constraints) can be well approximated with linear equations
- Important applications
- There are efficient toolboxes that can solve LPs

Sketching Linear Programs

Example:

Simplex Algorithm

Example:

Linear Program

Linear Program

High dimensional case is similar:

faces, facets instead of edges

cost function = hyperplane

Applications

Pattern Classification via Linear Programming

Application

Pattern Classification via Linear Programming

More info can be found on: cgm.cs.mcgill.ca/~beezer/cs644/main.html

Goal: show how LP can be used for linear classification.

Why LP?

There are many efficient LP solver software packages

Formal goal:

Problem 1: Determine whether H and M are linearly separable

Problem 2: If H and M are linearly separable,

then find a separating hyper plane

Observation:

H and M are linearly separable

Lemma 1:

H and M are linearly separable

Proof

Lemma 1:

H and M are linearly separable

Proof

Proof continued

Proof continued

Similarly,

Proof continued

We will see that the following linear problem solves Problem 1 & 2: [Mansgarian 1995]

Theorem 1

H and M are linearly separable iff the optimal value of LP is 0.

Theorem 2

H and M are linearly separable

 y^* , z^* , a^* , b^* is an optimal solution of (LP)

$$f(x)=a^{*T}x+b^*$$
 is a

separating hyperplane

Proof of Theorems 1 and 2

The optimal value of (LP) is 0

Application: Breast Cancer Diagnosis

Used at the University of Wisconsin Hospital

[Mangasarian et al 1995]

- 1. Fluid sample from breast.
- 2. Placed on a glass and stained the highlight the nuclei of cells
- 3. Image is taken
- 4. 30D features: Area, Radius, perimeter, etc

Goal: Classification between benign lumps and malignant lumps

Results: 97.5% accuracy

Example 1: Linearly Separable Case

Example 2: Linearly nonseparable case

Linear Programs

- ☐ Standard from, Canonical form, Inequality form
- ☐ Transforming LPS
 - Pivot transformation

Linear Programs

Inequality form of LPs using matrix notation:

Standard form of LPs:

Transforming LPs

Theorem: Any LP can be rewritten to an equivalent standard LP

Getting rid of inequalities (except variable bounds)

☐ Getting rid of equalities

Transforming LPs

☐ Getting rid of negative variables

☐ Getting rid of bounded variables

■ Max to Min

☐ Negative b_i