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Administrivia 
 Please ask questions!

 Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/

 Anonym feedback survey will be on black board today. 
Please use it! Constructive feedback and suggestions are always 
welcome!

 1st recitation on Wednesday by Aaditya:

- Linear algebra, Calculus, Probability

- Linear Programming (another simplex method)

http://www.stat.cmu.edu/~ryantibs/convexopt/
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Basic Definitions

 More and more complicated optimization problems

 Definition of LP
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Simplest Optimization Problems 

 Constant function

 1-dim linear function

 1-dim linear function with bound constraints

Goal: 
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Linear Programs 
 n-dim linear function with m linear constraints 

Inequality form:

Cost function:

Constraints:

Bounds:
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Linear Programs 

Inequality form using matrix notation:

Example:

Cost function:

Constraints:

Bounds:
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Goal of this (…and next) lecture(s) 
 To be able to solve Linear Programs

Simplex Algorithm (Phase I and Phase II)
(Later we will see other algorithms too)

 Understand why LP is useful 

 Motivation

 Applications in Machine Learning

 Understand the difficulties

 Convergence? Polynomial or Exponential many operations?

 Will algorithms find the exact solutions, or only approximate 
ones?
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Linear Programs 

 Motivation

 History

 Sketching LP
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History 

Dantzig 1947 (Simplex method)

(one of the top 10 algorithms of the twentieth century)

Motivated by World War II:

 Job scheduling (Assign 70 men to 70 jobs)

 Blending problem 
(produce a blend (30% Lead, 30% Zinc, 40% Tin) out 
of  9 different alloys (different mixture, different costs) 
such that the cost is minimal)

 Network flow optimization (Max flow min cut)
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The product mix problem 

Desk 1 Desk 2 Desk 3 Desk 4 Available 
hrs

Carpentry shop 
hrs

4 9 7 10 6000

Finishing shop hrs 1 1 3 40 4000

Profit $12 $20 $18 $40

A furniture company manufactures four models of desks

Number of man hours and profit:

Why is it called Linear Programing???
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Motivation: Why Linear Programing? 

 The simplest, nontrivial optimization problem

 Many complex system (objective and constraints) can be well 
approximated with linear equations

 Important applications

 There are efficient toolboxes that can solve LPs
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Sketching Linear Programs
Example:
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Simplex Algorithm
Example:

• Simplex algorithm:

O-A-B-C

O-D-C

• Interior point methods
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Linear Program

Observations, Difficulties:

• Feasible set might not exist, no solution

(Inconsistency in the constraints)

• Infinite many global optimum

(Optimum is on an edge)

• Optimum can be –1, 1

(Unbounded optimum)
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Linear Program

High dimensional case is similar:

faces, facets instead of edges

cost function = hyperplane
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Applications
Pattern Classification via Linear Programming
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Application 

Pattern Classification via Linear Programming

More info can be found on: cgm.cs.mcgill.ca/~beezer/cs644/main.html

Goal: show how LP can be used for linear classification.

Why LP? 

There are many efficient LP solver software packages
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Pattern Classification via LP
Formal goal:

Problem 1: Determine whether H and M are linearly separable

Problem 2: If H and M are linearly separable, 
then find a separating hyper plane 

Linearly not separable sets:Linearly separable sets:
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Pattern Classification via LP

Observation:

Linearly separable sets:

H and M are linearly separable 

H

M

Linearly not separable sets:
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Pattern Classification via LP
Lemma 1:

H and M are linearly separable 

Proof
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Pattern Classification via LP
Lemma 1:
H and M are linearly separable 

Proof
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Pattern Classification via LP

Proof continued
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Pattern Classification via LP

Proof continued

Similarly,
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Pattern Classification via LP

Proof continued

H

M
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Pattern Classification via LP

We will see that the following linear problem solves Problem 1 & 2:

[Mansgarian 1995]
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Pattern Classification via LP

Theorem 1

Theorem 2
H and M are linearly separable iff the optimal value of LP is 0.

H and M are linearly separable

y*, z*, a*, b* is an optimal solution of (LP)

f(x)=a*Tx+b* is a 

separating hyperplane
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Pattern Classification via LP

Proof of Theorems 1 and 2
The optimal value of (LP) is 0
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Application:  Breast Cancer Diagnosis

Used at the University of Wisconsin Hospital

[Mangasarian et al 1995]

1. Fluid sample from breast.

2. Placed on a glass and stained the highlight the nuclei of cells

3. Image is taken

4. 30D features: Area, Radius, perimeter, etc

Goal: Classification between benign lumps and malignant lumps

Results: 97.5% accuracy

Pattern Classification via LP
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Pattern Classification via LP
Example 1: Linearly  Separable Case



32

Pattern Classification via LP
Example 2: Linearly  nonseparable case



33

Linear Programs 

 Standard from, Canonical form, Inequality form

 Transforming LPS

 Pivot transformation 
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Linear Programs 

Inequality form of LPs using matrix notation:

Standard form of LPs:

Theorem: Any LP can be rewritten to an equivalent standard LP
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Transforming LPs 

 Getting rid of inequalities (except variable bounds) 

 Getting rid of equalities

Theorem: Any LP can be rewritten to an equivalent standard LP
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Transforming LPs 

 Getting rid of negative variables

 Getting rid of bounded variables

 Max to Min

 Negative bi
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Inequality form

max 2x+3y s.t.

‣ x + y · 4

‣ 2x + 5y · 12

‣ x + 2y · 5

‣ x, y ¸ 0

Standard form

max 2x+3y s.t.

‣ x + y + u = 4

‣ 2x + 5y + v = 12

‣ x + 2y + w = 5

‣ x, y, u, v, w ¸ 0

From Inequality Form to Standard Form

if std fm has n vars, m eqns,

then ineq form has 

n–m vars and m+(n–m)=n ineqs

(here m = 3, n = 5)
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Linear Programing 2
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Pivot Transformation
Consider the following problem

Definition: [Pivot]

 Choose a nonzero element, e.g. 3X4

 Use this to eliminate X4 from the remaining equations

 = Gauss elimination
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Pivot Transformation
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Pivot Transformation

After pivot we got an equivalent system: The solution set is the same.

If we pivot again, say in X2/3, then

Let us rewrite this:
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Canonical Form

Definition [canonical form]

 (*) is in canonical form w.r.t (-Z), X4, X2 variables

 X1, X3, X5 = Independent (Nonbasic) variables

 -Z, X4, X2 = Dependent (Basic) variables. 

They are expressed with other variables
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Canonical Form

 X1, X3, X5 = Independent (Nonbasic) variables

 -Z, X4, X2 = Dependent (Basic) variables. 

If we set the nonbasics to zero, then we get values for the basic variables:

However, if X1 and X4 had been chose for pivoting, then
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Canonical Form

Goal of pivots: reduce the original LP problem to canonical form

From canonical form it is easy to find a (basic) solution: 

(we just need to set the nonbasic variables to zero)

This basic solution might be 

 not feasible (because of the boundary constraint! 
We have to have Xi ¸ 0)

 not optimal (i.e. Z is not minimal)

Pivoting does not alter the solution set. 
(After pivots the systems are equivalent)
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Canonical Form

Formal definition of canonical form:

Example

A system of m equations and n variables
is in canonical form w.r.t 
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Canonical Form

Definition: [Basic solution]

Example

Canonical form:



47

Warming up for the Simplex Algorithm

How to solve LPs if we already have 

a canonical form with basic feasible solution?

Simplex Algorithm Phase II
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Starting from Canonical Form
Assume that we have a canonical form with feasible basic solution

Using matrix notation:

In this canonical form the basic solution is:
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Improving a Nonoptimal Basic Solution
Let us continue the example

Basic feasible solution:

Goal: min Z, s.t. Xi ¸ 0

 The relative cost factor of X3 is (-5)<0

 Let us see if we can change X3 from zero to decrease Z
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Improving a Nonoptimal Basic Solution

 Keep X3 , and XB=(-Z,X2,X4) as parameters. (X1,X5)=(0,0)

Xi ¸ 0, so we can decrease Z by changing 

those Xi components which have Ci<0

relative cost factors!

 The relative cost factor of X3 is (-5)<0

We can decrease Z by increasing X3 from 0,

as long as
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Improving a Nonoptimal Basic Solution
X ¸ 0, so we can decrease Z by changing 

those Xi components which have Ci<0

relative cost factors

We can decrease Z by increasing X3 from 0,

as long as
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Improving a Nonoptimal Basic Solution

What just happened?

 We brought X3 into XB.

 Either X2 or X4 can go out into XN

 We chose X4 to go out, because that minimizes Z the most

 This is the same as making a pivot on 3X3 in (*)
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Improving a Nonoptimal Basic Solution
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Improving a Nonoptimal Basic Solution
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Improving a Nonoptimal Basic Solution
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Improving a Nonoptimal Basic Solution
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1. Optimality test

2. In each step one variable in, one variable out
(Traveling on the neighboring corners of the polytope)

3. The adjusted values have to be nonnegative

The Simplex Algorithm (Phase II)

Key components of the simplex algorithm
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The Simplex Algorithm (Phase 2)

Assume that we start from a feasible canonical form:

The initial feasible solution is:

Steps of the Simplex algorithm
(1) Smallest reduced cost
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The Simplex Algorithm

Steps of the Simplex algorithm

(4) Test for unbounded Z

(3) Incoming variable

(2) Test for optimality
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The Simplex Algorithm
Steps of the Simplex algorithm

(5) Outgoing variable • This r will show the outgoing variable

• The basic variable in the rth row of A

Lemma [New basic solution remains feasible]

Proof
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The Simplex Algorithm

Steps of the Simplex algorithm

(6) Pivot on Ars

• This gives us new basic feasible solution

• We do this pivot regardless if Z changes or not
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The Simplex Algorithm

Steps of the Simplex algorithm

Bland’s rule: Whenever the pivot in the simplex method would result in 

a zero change of the objective Z, do the following: 

(i) Incoming column:

(ii) Outgoing column:

• If zero change in the objective Z, then cycling can happen

• Bland rule can avoid cycling
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The Simplex Algorithm Summary

Theorem:

A basic feasible solution is optimal with total cost Z0, 

if all relative cost factors (Cj, j=1,…,n) are nonnegative.

Proof:

Theorem:

A basic feasible solution is the unique optimal solution with total cost Z0, 

if Cj>0 for all nonbasic variables.
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The Simplex Algorithm Summary

Theorem:

Assuming “non-degeneracy” at each iteration (bj>0, j=1,…,m), 

the simplex algorithm will converge in finite steps.

Proof:

There are only finite many basis, and because of “non-degeneracy”,

cycling cannot happen.

 If we use infinite-precision arithmetic, then we can find the exact 
solution. (No approximation used)

 Interior point methods can only converge to an epsilon ball that 
contains the solution.

Remark:
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The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is

available to start the algorithm…
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The Simplex Algorithm Summary
The simplex method can be applied to a Linear Program in standard form:

Phase I: 

- Find a starting basic feasible solution in canonical form

and detect redundancies 

- or determine if such solution doesn’t exist

detect inconsistencies

Phase II:

If starting basic solution found, then

- find an optimal solution

- or show that Z  -1 is possible
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The Simplex Algorithm Phase I
Example

Goal: We want to find a feasible solution

Phase I: 

(i) Forget the cost function cTx.

(ii) Introduce X6,X7 ¸ 0. [One variable for each row]

(iii) Solve
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The Simplex Algorithm Phase I

Theorem: (*2) has feasible optimal solution such that X6=X7=0

iff (*1) has feasible solution

 (*2) is easy to convert to a feasible canonical solution (We will see)

 We can find its optimal solution (X6=X7=0) with the Phase II algorithm 
This is a feasible solution of (*1)

Remarks:
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Tableaux

Basic 
variable

Objective 
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

1 0 0 0 0 0 1 1 0

0 4 2 13 3 1 1 0 17

0 1 1 5 1 1 0 1 7

It’s easy to convert this to a feasible canonical form:

Basic 
variable

Objective 
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7
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Tableaux
Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B.
var

Obj.
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7
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Tableaux

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B.
var

Obj.
(-w)

X1 X2 X3 X4 X5 X6 X
7

RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7
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Tableaux

Let us simplify this Table a little:

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -7/13 -3/13 0 2/13 -8/13 18/13 0 -6/13

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-7/13 3/13 0 -2/13 8/13 -5/13 1 6/13
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Tableaux

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

All the relative costs are nonnegative ) optimal feasible solution.

Phase I is finished.
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Tableaux

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

B. var Obj
(-z)

X1 X2 X3 X4 X5 X6 X7 RHS

-z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4
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Tableaux

B. var Obj
(-z)

X1 X2 X3 X4 X5 X6 X7 RHS

-z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

Make it to canonical form and continue with Phase II…

Do not make pivots in the column of X6 and X7
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f = [-5 -4 -6]';

A = [ 1 -1 1
3 2 4
3 2 0 ];

b = [20 42 30]';

lb = zeros(3,1);

options = optimset('LargeScale','off','Simplex','on');

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb,[],[],options);

Simplex Algorithm with Matlab
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Relevant Books

 Luenberger, David G. Linear and Nonlinear Programming. 2nd ed. 
Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.

 Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear 
Optimization. Athena Scientific Press, 1997. ISBN: 1886529191.

 Dantzig, Thapa: Linear Programming 
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Summary 

 Linear programs: 

 standard form, 

 canonical form

 Solutions: 

 Basic, Feasible, Optimal, Degenerate

 Simplex algorithm: 

 Phase I

 Phase II

 Applications: 

 Pattern classification


