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Administrivia  
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Canonical form: 

New cost value: 

New b vector: 

Simplex Algorithm in 1 Slide 

If we do pivot in Ar,s >0, where cs<0 
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The full Simplex Algorithm 

So far we have assumed that a basic feasible solution in canonical form is 

 available to start the algorithm… 
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The Simplex Algorithm Phase I 

Example 

Goal: We want to find a feasible solution 

Phase I:  

(i) Forget the cost function cTx. 

(ii) Introduce X6,X7 ¸ 0. [One variable for each row] 

(iii) Solve 
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The Simplex Algorithm Phase I 

Theorem: (*2) has feasible optimal solution such that X6=X7=0 

  iff (*1) has feasible solution 

 (*2) is easy to convert to a feasible canonical solution (We will see) 

 We can find its optimal solution (X6=X7=0) with the Phase II algorithm  

This is a feasible solution of (*1) 

Remarks: 
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Tableaux 

Basic 
variable 

Objective 
(-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

1 0 0 0 0 0 1 1 0 

0 4 2 13 3 1 1 0 17 

0 1 1 5 1 1 0 1 7 

It’s easy to convert this to a feasible canonical form: 

Basic 
variable 

Objective 
(-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 -5 -3 -18 -4 -2 0 0 -24 

X6 0 4 2 13 3 1 1 0 17 

X7 0 1 1 5 1 1 0 1 7 
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Tableaux 

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1): 

B. 
var 

Obj. 
(-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 -5 -3 -18 -4 -2 0 0 -24 

X6 0 4 2 13 3 1 1 0 17 

X7 0 1 1 5 1 1 0 1 7 
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Tableaux 

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1): 

B. 
var 

Obj. 
(-w) 

X1 X2 X3 X4 X5 X6 X
7 

RHS 

-w 1 -5 -3 -18 -4 -2 0 0 -24 

X6 0 4 2 13 3 1 1 0 17 

X7 0 1 1 5 1 1 0 1 7 

B. var Obj 
 (-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7 

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13 

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 
 

-5/13 1 7-5/13*7 
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Tableaux 

Let us simplify this Table a little: 

B. var Obj 
 (-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7 

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13 

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 
 

-5/13 1 7-5/13*7 

B. var Obj 
 (-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 -7/13 -3/13 0 2/13 -8/13 18/13 0 -6/13 

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13 

X7 0 1-7/13 3/13 0 -2/13 8/13 -5/13 1 6/13 
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Tableaux 

B. var Obj 
 (-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 0 0 0 0 0 1 1 0 

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4 

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4 

All the relative costs are nonnegative ) optimal feasible solution. 

Phase I is finished. 
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Tableaux 

B. var Obj 
 (-w) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-w 1 0 0 0 0 0 1 1 0 

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4 

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4 

B. var Obj 
 (-z) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-z 1 2 1 2 1 4 0 0 0 

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4 

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4 



12 

Tableaux 

B. var Obj 
 (-z) 

X1 X2 X3 X4 X5 X6 X7 RHS 

-z 1 2 1 2 1 4 0 0 0 

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4 

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4 

Make it to canonical form and continue with Phase II… 

Do not make pivots in the column of X6 and X7 
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f = [-5  -4  -6]'; 

 

A =  [ 1 -1  1 

         3  2  4 

         3  2  0 ]; 

 

b = [20  42 30]'; 

 

lb = zeros(3,1); 

 

options = optimset('LargeScale','off','Simplex','on'); 

 

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb,[],[],options); 

 

Simplex Algorithm with Matlab  
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Relevant Books 

 Luenberger, David G. Linear and Nonlinear Programming. 2nd ed. 

Reading, MA: Addison Wesley, 1984. ISBN: 0201157942. 

 

 Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear 

Optimization. Athena Scientific Press, 1997. ISBN: 1886529191. 

 

 Dantzig, Thapa: Linear Programming  
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Summary  

 Linear programs:  

 standard form,  

 canonical form 

 Solutions:  

 Basic, Feasible, Optimal, Degenerate 

 Simplex algorithm:  

 Phase I 

 Phase II 

 Applications:  

 Pattern classification 



Convex Optimization 

CMU-10725 
4. Convexity Part I 

Barnabás Póczos & Ryan Tibshirani  
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Goal of this lecture  

 

 Review of Convex sets & Convex functions 

 Definition 

 Examples 

 Basic properties 

Books to Read:  

• Boyd and Vandenberghe: Convex Optimization, Chapters 2 & 3 

• Rockafellar: Convex Analysis 
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Line and Line Segments  

Definition [Line]: 

Definition [Line segment]: 
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Affine Sets  

Definition [Affine set]: 

Definition [Affine hull of set C]: 

Theorem [Affine hull]: 

The Aff[C] is the smallest affine set that contains C 
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Affine Sets Example 

Example [Solutions of linear equations]: 

The solution set of a system of linear equations is an affine set 

Solution set: 

Proof: 
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Boundaries 

 

Definition [x in interior of C]:  

 

 

Definition [relative interior (rel int C)]: 

 

 

Definition [x on boundary of C (∂C) ]: 
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Boundaries 

Definition [closure of C (cl C) ]: 

 

 

 

Definition [relative boundary of C (rel ∂C) ]: 
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Open and Closed Sets 

Definition [C closed]: 

Definition [C open]: 

 

 

 

Definition [C compact]: 
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Convex sets 
Convex Non convex 

Definition [Convex set]: 

Definition [Strictly convex set]: 

Example [Convex, but not strictly convex]: 
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Examples of Convex Sets 

 empty set: 

 singleton set: 

 complete space: 

 

 lines: 

 line segments:  

 hyperplanes: 

 halfspaces: 
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Examples of Convex Sets 

 Euclidian balls: 

 

 

 Lp balls, p¸ 1 

 

 

 

 

 Lp balls 0<p<1   
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Examples of Convex Sets 

 Polyhedron: 

 

 

 

 Matrix notation: 

 Polytope: bounded polyhedron  

 the solution set of a finite number of linear 
equalities and inequalities 

Intersection of halfspaces 

 & hyperplanes 
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Convex hull 

Definition [Convex hull]: 
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Convex hull 
Convex hull properties: 
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Examples of Convex Sets 

 Simplex: 
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Convex Combination 

Infinite many sums 

Integrals (Expected value) 
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Cones 

Definition [Convex Cone]: 

Definition [Conic hull]: 

Definition [Cone]: 



33 

Example: PSD matrices 

Definition [Positive semi definite matrix]: 

A symmetric matrix A is positive definite iff all its eigenvalues are positive 

Partial ordering of square matrices:  

 For arbitrary square matrices M, N we write M ≥ N  

  if M − N ≥ 0; i.e., M − N is positive semi-definite.  

Theorem [eigenvalues]: 
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Example: PSD matrices 

Theorem [Cone of PSD matrices]: 

The set of symmetric, PSD matrices form a convex cone: 

Proof: 
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Convex set representation with convex hull 

Theorem: [Representation of a closed convex set with a convex hull] 
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Dual representation 

Theorem: [Representation of a closed convex set with half spaces] 
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Convexity-preserving set operations 

 Translation 

 

 Scaling 

 

 Intersection 
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Convexity-preserving set operations 

 Affine function 

 E.g. projection, dropping coordinates 

 

 

 Set sum 

 

 

 Direct sum 

 



Convex Optimization 

CMU-10725 
5. Convexity Part II 

Barnabás Póczos & Ryan Tibshirani  
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Conevex Hull 

Definition 1 

Note:  

 If C is a finite set, then this is closed polyhedron. 

 If C  contains infinite many points, then this can be open, closed,  

 or none of them 

Theorem [Definition 2, Primal representation] 

A closed convex set is the intersection of all the  

closed half spaces containing S  



Convex set representation with convex hull 

Theorem: [Representation of a closed convex set with a convex hull] 

Convex hull = convex combination of possibly infinite many points in the set. 



Dual representation 

Theorem: [Representation of a closed convex set with half spaces] 

A closed convex set is the intersection of all the closed half spaces containing S  
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Convexity-preserving set operations 

 Perspective projection (pinhole camera) 
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Convexity-preserving set operations 

 Linear-fractional function 

(perspective function with affine function) 

 

 

 

 
Theorem: [Image of Linear fractional function] 
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Convexity-preserving set operations 

Application: [Conditional probabilities] 
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Convexity-preserving set operations 

 Union doesn’t preserve convexity 
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Separating hyperplane thm 

Theorem: [Separating hyperplane theorem] 
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Separating hyperplane thm 

Definition: [Strong separation] 

 

 

 

Definition: [Proper separation],  

 

 

Definition: [Strict separation] 

It   "strictly   separates"   them   if   neither   one   touches   

 the hyperplane.   
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Separating hyperplane thm 
Theorem: [Strong separation theorem] 

Counterexample:  

Why do we need at least  

one bounded set? 
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Separating hyperplane thm II 

Theorem: [Strong separation theorem II] 
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Supporting hyperplane thm 

For any point x0 on the boundary of convex C 

Theorem: [Supporting hyperplane theorem] 

Theorem: [Partial converse of the supporting hyperplane theorem] 
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Proving a set convex 

 Use definition directly 

 

 Represent as convex hull 

 

 Represent as the intersection of halfspaces 

 

 Supporting hyperplane partial converse: 

 C closed, nonempty interior, has supporting 
hyperplane at all boundary points ⇒ C convex 

 

 Build C up from simpler sets using convexity-preserving 
operations 
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Convex functions  
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Convex functions  

Definition [convex function]: 

Definition [strictly convex function]: 
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Concave functions  

Definition [concave function]: 

-f is convex 
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Convex functions  

Geometric interpretation 
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Strongly convexity 

An equivalent condition: 

Without gradient: 

Definition:[m-strongly convex function (m>0) 

With Hessian: 

A strongly convex function is also strictly convex, but not vice-versa. 
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Examples 
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Examples: Convex functions 

Convex 

Concave 
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Extended reals 

We can extend f from dom f to Rn without changing its convexity 

Theorem: 
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Epigraph 

Definition [epigraph]: 

Theorem [convexity of the epigraph]: 
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Convex Function Properties  

0th order characterization 

This is useful, because we only need to check the convexity of 1D functions. 

Graph courtesy of Prof. Robert Freund 
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Convex Function Properties  

1st order characterization 

Corollary: 

The 1st oder Taylor approximation is a global underestimator of f. 
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Convex Function Properties  

2nd order characterization 

Lemma 
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Jensen’s inequality 

Theorem 
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Proving a function convex 

 

 Use definition directly 

 

 Prove that epigraph is convex via set methods 

 

 0th, 1st, 2nd order convexity properties 

 

 Construct f from simpler convex fns using 
convexity-preserving ops 
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Convexity-preserving fn ops 

Pointwise max/sup 

Nonnegative weighted sum 

Extension of pointwise max/sup 
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Convexity-preserving fn ops 

Composition 

Affine map 

Perspective map 
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Summary 

 Convex sets 

• Representation: 

• convex hull, intersect hyperplanes 

• supporting, separating hyperplanes 

• operations that preserve convexity 

 

 Convex functions 

• epigraph 

• 0 orders, 1st order, 2nd order conditions 

• operations that preserve convexity 


