


Simplex Algorithm in 1 Slide

Canonical form:

If we do pivot in A, >0, where c,<0
New cost value:

New b vector:



The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is

available to start the algorithm...



The Simplex Algorithm Phase 1

Example

Goal: We want to find a feasible solution

Phase I:
(i) Forget the cost function c'x.

(i) Introduce Xg,X,; > 0. [One variable for each row]

(i) Solve



The Simplex Algorithm Phase 1

Theorem: (*2) has feasible optimal solution such that X;=X,=0

iff (*1) has feasible solution

Remarks:

A (*2) is easy to convert to a feasible canonical solution (We will see)

0 We can find its optimal solution (X;=X,=0) with the Phase II algorithm
This is a feasible solution of (*1)



Tableaux

e s e
variable Q"))
1 O 0 0 0 O 1 1 0

0 4 2 13 3 1 1 0 17
0 1 1.5 1 1 O 1 7

It's easy to convert this to a feasible canonical form:

Eﬁ
variable -w)

5 -3 -18 4 -2 -24
X6 0 4 2 13 3 1 1 0 17

X5 0 1 15 1 1 O 1 7



Tableaux

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

S (e o a6 e X% X [X|RHS
(-w)

-W 1 -5 -3 -18 -4 -2 0 0 -24
X 0 4 2 13 3 1 1 0 17

X5 0 1 1 5 1 1 0 1 7




Tableaux

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

N e O
-w)

_18 _
x6 0 4 2 13 3 1 1 0 17

X5 0 1 1 5 1 1 0 1 7

i N O N N N A
-w)

-5+18/13*4  -3+18/13*2 -4+18/13*3  -2+18/13 18/13 0 -24+18/13*7
X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13
Xy 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7



Tableaux

i O O N O 2 L
-w)

-5+18/13*4  -3+18/13*2 -4+18/13*3  -2+18/13 18/13 0 -24+18/13*7
X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13
X5 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7

Let us simplify this Table a little:

I N O N R N 2
-w)

-7/13 -3/13 2/13 -8/13 18/13 0 -6/13
X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13
Xy 0 1-7/13 3/13 0 -2/13 8/13 -5/13 1 6/13



Tableaux

Sy e e [ (X X (X (X RHS
(-w)

-W 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

Xs 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

All the relative costs are nonnegative = optimal feasible solution.

Phase I is finished.
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Tableaux

I N N N N O R N 2 S
(-w)
-W 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

Xs 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

I S N O O N N 2
(-z)

-z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

Xs 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4
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Tableaux

I S N O O R N 2
(-z)

-Z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

Xs 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

Make it to canonical form and continue with Phase I1I...

Do not make pivots in the column of X, and X,
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Simplex Algorithm with Matlab

f=[5 -4 -6]"

A=[1-11
324
3207

b =[20 42 30]:

lb = zeros(3,1);
options = optimset('LargeScale’,'off','Simplex’,'on’);

[X,fval,exitflag,output,lambda] = linprog(f,A,b,[],[].Ib,[],[],options);
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Relevant Books

O Luenberger, David G. Linear and Nonlinear Programming. 2nd ed.
Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.

O Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific Press, 1997. ISBN: 1886529191.

O Dantzig, Thapa: Linear Programming
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O Linear programs:

= standard form,

= canonical form
O Solutions:

= Basic, Feasible, Optimal, Degenerate
d Simplex algorithm:

= Phasel

= Phase Il
A Applications:

= Pattern classification
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Goal of this lecture

d Review of Convex sets & Convex functions

= Definition
= Examples

= Basic properties

Books to Read:

Boyd and Vandenberghe: Convex Optimization, Chapters 2 & 3

Rockafellar: Convex Analysis
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Line and Line Segments

Definition [Line]:

{x € R"x =0x1 4+ (1 —0)xp,0 € R}

Definition [Line segment]:

{x e Rz =0x1 + (1 —0)xp,0 € [0,1]}
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Affine Sets

Definition [Affine set]:

A set C is affine if for any x1,z0 € C
the line through 1 and z» is in C,
i.e. Ox1+ (1 —0)ar € C, (0 € R)

Definition [Affine hull of set C]:

Theorem [Affine hull]:
The Aff[C] is the smallest affine set that contains C
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Affine Sets Example

Example [Solutions of linear equations]:

The solution set of a system of linear equations is an affine set

Solution set:

Proof:
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Boundaries

Definition [x on boundary of C (aC) ]: ‘

Definition [x in interior of CJ:

Definition [ re/ative interior (rel int C)]:

/
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Boundaries

Definition [closure of C (cl C) ]:

Definition [ re/ative boundary of C (rel oC) ]:
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Open and Closed Sets

Definition [C closed]:

Definition [C open]: o

Definition [C compact]:
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Convex sets

Convex Non convex

Definition [Convex set]:

Definition [Strictly convex set]:

Example [Convex, but not strictly convex]: /\
24




U O O

(R A N N

Examples of Convex Sets

empty set:
singleton set:

complete space:

lines:

line segments:
hyperplanes:
halfspaces:
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Examples of Convex Sets

O Euclidian balls:

a L, balls, p> 1

a L, balls 0<p<1
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Examples of Convex Sets

d Polyhedron: the solution set of a finite number of linear
equalities and inequalities

Matrix notation: ‘
A Polytope: bounded polyhedron

@
1 a2

Intersection of halfspaces

& hyperplanes

(153

(155
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Convex hull

Definition [Convex hull]:
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Convex hull

Convex hull properties:
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Examples of Convex Sets

d Simplex:
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Convex Combination

Infinite many sums

Integrals (Expected value)
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Cones

Definition [Cone]:

Definition [Convex Cone]: ‘

Definition [Conic hull]:
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Example: PSD matrices

Definition [Positive semi definite matrix]:

Theorem [eigenvalues]:

A symmetric matrix A is positive definite iff all its eigenvalues are positive

Partial ordering of square matrices:
For arbitrary square matrices M, Nwe write M> N
if M— N> 0; i.e, M- Nis positive semi-definite.
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Example: PSD matrices

Theorem [Cone of PSD matrices]:

The set of symmetric, PSD matrices form a convex cone:

Proof:
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Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]
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Dual representation

Theorem: [Representation of a closed convex set with half spaces]
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Convexity-preserving set operations

1 Translation

 Scaling

1 Intersection
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Convexity-preserving set operations

A Affine function
= E.g. projection, dropping coordinates

J Set sum

1 Direct sum
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Conevex Hull

Definition 1

Note:
= If Cis a finite set, then this is closed polyhedron.
= If C contains infinite many points, then this can be open, closed,

or none of them

Theorem [Definition 2, Primal representation]

A closed convex set is the intersection of all the

closed half spaces containing S 40



Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]

Convex hull = convex combination of possibly infinite many points in the set.



Dual representation

Theorem: [Representation of a closed convex set with half spaces]

A closed convex set is the intersection of all the closed half spaces containing S



Convexity-preserving set operations

A Perspective projection (pinhole camera)
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Convexity-preserving set operations

A Linear-fractional function
(perspective function with affine function)

Theorem: [Image of Linear fractional function]
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Convexity-preserving set operations

Application: [Conditional probabilities]
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Convexity-preserving set operations

[ Union doesn’t preserve convexity

©
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Separating hyperplane thm

Theorem: [Separating hyperplane theorem]

a
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Separating hyperplane thm

Definition: [Strong separation]

Definition: [Proper separation],

Definition: [Strict separation]

It "strictly separates" them if neither one touches

the hyperplane. 48



Separating hyperplane thm

Theorem: [Strong separation theorem] ‘

Counterexample:
Why do we need at least

one bounded set?
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Separating hyperplane thm II

Theorem: [Strong separation theorem II]
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Supporting hyperplane thm

Theorem: [Supporting hyperplane theorem]

For any point x, on the boundary of convex C

Theorem: [Partial converse of the supporting hyperplane theorem]
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Proving a set convex

d Use definition directly

 Represent as convex hull
d Represent as the intersection of halfspaces

A Supporting hyperplane partial converse:

= (C closed, nonempty interior, has supporting
hyperplane at all boundary points = C convex

[ Build C up from simpler sets using convexity-preserving
operations
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Convex functions
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Convex functions

Definition [convex function]:

Definition [strictly convex function]:
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Concave functions

Definition [concave function]:

-f is convex
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Convex functions

Geometric interpretation

A

T
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Strongly convexity

Definition:[m-strongly convex function (m>0)

(Vi) = VNI (@ —y) > m|z —y|3

An equivalent condition:

f() > f(@) + V@) (y — z) + By — =3

Without gradient: V¢ ¢ [0, 1]
Ftz+ (1 —)y) <tf@) + Q=) f(y) — mt(1 — )|z — y||3
With Hessian:

V2f(z) = mlI for all z in the domain

A strongly convex function is also strictly convex, but not vice-versa.
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f(z) = z*; convex, strictly convex, not strongly convex.

f(x) = |x|: convex, not strictly convex.
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Examples: Convex functions

Convex

Concave
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Extended reals

We can extend f from dom f to R" without changing its convexity

Theorem:
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Epigraph

Definition [epigraph]: ’

Theorem [convexity of the epigraph]:
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Convex Function Properties

0Oth order characterization ‘

This is useful, because we only need to check the convexity of 1D functions.

Graph courtesy of Prof. Robert Freund
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Convex Function Properties

1st order characterization ‘

f(@)+ V(@) (y - )

The 1st oder Taylor approximation is a global underestimator of f.

Corollary:
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Convex Function Properties

2nd order characterization ‘

Lemma ‘
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Jensen’s inequality

Theorem

65



Proving a function convex

[ Use definition directly

A Prove that epigraph is convex via set methods
Q Oth, 1st, 2nd order convexity properties

[ Construct f from simpler convex fns using
convexity-preserving ops
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Convexity-preserving fn ops

Nonnegative weighted sum

If f1, fo cvx, w; > 0 = h(x) = w1 f1(x) + wofo(x) Ccvx

Pointwise max/sup

If f, g cvx, = m(x) = max{f(x),g(x)} cvx

Extension of pointwise max/sup

If f(x,y) is convex in x for each y
= g(x) = sup,cc f(x,y) is convex in z,
provided ¢g(xz) > —oo for some .
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Convexity-preserving fn ops

Affine map
If f:R" —Ris cvx, = g(x) = f(Axz + b) is cvx,
where A € R*"*™ p ¢ R",
Composition
If f, g are cvx, and g is non-decreasing,
= h(x) = g(f(x)) is cvx.
If f Is concave and g is cvx and non-increasing,
= h(x) = g(f(x)) is cvx.

Perspective map

If f(x) is convex, = g(x,t) = tf(x/t) is convex.
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(1 Convex sets

e Representation:
e convex hull, intersect hyperplanes

e supporting, separating hyperplanes
e operations that preserve convexity

d Convex functions
e epigraph
e 0 orders, 1st order, 2nd order conditions
e operations that preserve convexity
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