Administrivia

Simplex Algorithm in 1 Slide

Canonical form:

If we do pivot in $A_{r,s} > 0$, where $c_s < 0$ New cost value:

New **b** vector:

The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is available to start the algorithm...

The Simplex Algorithm Phase I

Example

Goal: We want to find a feasible solution

Phase I:

- (i) Forget the cost function $c^T x$.
- (ii) Introduce $X_6, X_7 \ge 0$. [One variable for each row]
- (iii) Solve

The Simplex Algorithm Phase I

Theorem: (*2) has feasible optimal solution such that $X_6 = X_7 = 0$ iff (*1) has feasible solution

Remarks:

- □ (*2) is easy to convert to a feasible canonical solution (We will see)
- □ We can find its optimal solution $(X_6=X_7=0)$ with the Phase II algorithm This is a feasible solution of (*1)

Basic variable	Objective (-w)	X	X 2	Х <mark>3</mark>	X 4	Х 5	X ₆	X 7	RHS
	1	0	0	0	0	0	1	1	0
	0	4	2	13	3	1	1	0	17
	0	1	1	5	1	1	0	1	7

It's easy to convert this to a feasible canonical form:

Basic variable	Objective (-w)	X ₁	X 2	Х 3	X ₄	X 5	X ₆	Х 7	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X ₁	X ₂	X ₃	X ₄	Х ₅	X ₆	X 7	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X1	X 2	X ₃	X ₄	X ₅	X ₆	X 7	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

B. var	Obj (-w)	X	X ₂	X ₃	X ₄	X ₅	X ₆	X 7	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

B. var	Obj (-w)	X	X ₂	X ₃	X ₄	X 5	X ₆	X 7	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

Let us simplify this Table a little:

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X 5	X ₆	X 7	RHS
-W	1	-7/13	-3/13	0	2/13	-8/13	18/13	0	-6/13
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-7/13	3/13	0	-2/13	8/13	-5/13	1	6/13

B. var	Obj (-w)	X	X ₂	X ₃	X ₄	X 5	X ₆	X 7	RHS
-W	1	0	0	0	0	0	1	1	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

All the relative costs are nonnegative \Rightarrow optimal feasible solution.

Phase I is finished.

B. var	Obj (-w)	X ₁	X ₂	Х <mark>3</mark>	X ₄	Х 5	Х ₆	X 7	RHS
-W	1	0	0	0	0	0	1	1	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

B. var	Obj (-z)	X	X ₂	X ₃	X ₄	Х 5	Х ₆	X 7	RHS
-Z	1	2	1	2	1	4	0	0	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

B. var	Obj (-z)	X	X ₂	X ₃	X ₄	X 5	Х <mark>6</mark>	X 7	RHS
-Z	1	2	1	2	1	4	0	0	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

Make it to canonical form and continue with Phase II...

Do not make pivots in the column of X_6 and X_7

Simplex Algorithm with Matlab

f = [-5 -4 -6]';

 $A = \begin{bmatrix} 1 & -1 & 1 \\ 3 & 2 & 4 \\ 3 & 2 & 0 \end{bmatrix};$

b = [20 42 30]';

lb = zeros(3,1);

options = optimset('LargeScale','off','Simplex','on');

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb,[],[],options);

Relevant Books

- □ Luenberger, David G. *Linear and Nonlinear Programming*. 2nd ed. Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.
- Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear Optimization. Athena Scientific Press, 1997. ISBN: 1886529191.
- Dantzig, Thapa: Linear Programming

Summary

- □ Linear programs:
 - standard form,
 - canonical form
- □ Solutions:
 - Basic, Feasible, Optimal, Degenerate
- □ Simplex algorithm:
 - Phase I
 - Phase II
- □ Applications:
 - Pattern classification

Convex Optimization CMU-10725

4. Convexity Part I

Barnabás Póczos & Ryan Tibshirani

Goal of this lecture

□ Review of Convex sets & Convex functions

- Definition
- Examples
- Basic properties

Books to Read:

- Boyd and Vandenberghe: Convex Optimization, Chapters 2 & 3
- Rockafellar: Convex Analysis

Line and Line Segments

Definition [Line]:

$$\{x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R}\}$$

Definition [Line segment]:

$$\{x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in [0, 1]\}$$

Affine Sets

Definition [Affine set]:

A set *C* is affine if for any $x_1, x_2 \in C$ the line through x_1 and x_2 is in *C*, i.e. $\theta x_1 + (1 - \theta) x_2 \in C$, $(\theta \in \mathbb{R})$

Definition [Affine hull of set C]:

Theorem [Affine hull]:

The Aff[C] is the smallest affine set that contains C

Affine Sets Example

Example [Solutions of linear equations]:

The solution set of a system of linear equations is an affine set

Solution set:

Proof:

Boundaries

Definition [x on boundary of C (∂ C)]:

Definition [x in interior of C]:

Definition [*relative* interior (rel int C)]:

Boundaries

Definition [closure of C (cl C)]:

Definition [*relative* boundary of C (rel ∂ C)]:

Open and Closed Sets

Definition [C closed]:

Definition [C open]:

Definition [C compact]:

Convex sets

Definition [Convex set]:

Definition [Strictly convex set]:

Example [Convex, but not strictly convex]:

- empty set:
- □ singleton set:
- □ complete space:
- □ lines:
- □ line segments:
- □ hyperplanes:
- □ halfspaces:

□ Euclidian balls:

 $\hfill\square$ L_p balls, $p{\geq}1$

 \Box L_p balls 0<p<1

Polyhedron: the solution set of a finite number of linear equalities and inequalities

Matrix notation:

Polytope: bounded polyhedron

Intersection of halfspaces

& hyperplanes

Convex hull

Definition [Convex hull]:

Convex hull properties:

□ Simplex:

Convex Combination

Infinite many sums

Integrals (Expected value)

Definition [Cone]:

Definition [Convex Cone]:

Definition [Conic hull]:

0

Example: PSD matrices

Definition [Positive semi definite matrix]:

Theorem [eigenvalues]:

A symmetric matrix A is positive definite iff all its eigenvalues are positive

Partial ordering of square matrices:

For arbitrary square matrices *M*, *N* we write $M \ge N$

if $M - N \ge 0$; i.e., M - N is positive semi-definite.

Example: PSD matrices

Theorem [Cone of PSD matrices]:

The set of symmetric, PSD matrices form a convex cone:

Proof:

Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]

Dual representation

Theorem: [Representation of a closed convex set with half spaces]

- □ Translation
- □ Scaling
- □ Intersection

□ Affine function

E.g. projection, dropping coordinates

Set sum

Direct sum

Convex Optimization CMU-10725

5. Convexity Part II

Barnabás Póczos & Ryan Tibshirani

Definition 1

Note:

- If C is a finite set, then this is closed polyhedron.
- If C contains infinite many points, then this can be open, closed, or none of them
- **Theorem** [Definition 2, Primal representation]

A closed convex set is the intersection of all the

closed half spaces containing S

Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]

Convex hull = convex combination of possibly infinite many points in the set.

Dual representation

Theorem: [Representation of a closed convex set with half spaces]

A closed convex set is the intersection of all the closed half spaces containing S

□ Perspective projection (pinhole camera)

Linear-fractional function
 (perspective function with affine function)

Theorem: [Image of Linear fractional function]

Application: [Conditional probabilities]

□ Union doesn't preserve convexity

Separating hyperplane thm

Theorem: [Separating hyperplane theorem]

Separating hyperplane thm

Definition: [Strong separation]

Definition: [Proper separation],

Definition: [Strict separation]

It "strictly separates" them if neither one touches the hyperplane.

Separating hyperplane thm

Theorem: [Strong separation theorem]

Counterexample:

Why do we need at least

one bounded set?

Separating hyperplane thm II

Theorem: [Strong separation theorem II]

Supporting hyperplane thm

Theorem: [Supporting hyperplane theorem]

Theorem: [Partial converse of the supporting hyperplane theorem]

Proving a set convex

- □ Use definition directly
- Represent as convex hull
- □ Represent as the intersection of halfspaces
- □ Supporting hyperplane partial converse:
 - C closed, nonempty interior, has supporting hyperplane at all boundary points ⇒ C convex
- Build C up from simpler sets using convexity-preserving operations

Convex functions

Convex functions

Definition [convex function]:

Definition [strictly convex function]:

Concave functions

Definition [concave function]:

-f is convex

Convex functions

Geometric interpretation

Strongly convexity

Definition:[m-strongly convex function (m>0)

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge m \|x - y\|_2^2$$

An equivalent condition:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

Without gradient: $\forall t \in [0, 1]$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{1}{2}mt(1-t)||x-y||_2^2$$

With Hessian:

$$\nabla^2 f(x) \succeq mI$$
 for all x in the domain

A strongly convex function is also strictly convex, but not vice-versa.

Examples

 $f(x) = x^4$: convex, strictly convex, not strongly convex.

f(x) = |x|: convex, not strictly convex.

Examples: Convex functions

Convex

Concave

Extended reals

We can extend f from dom f to Rⁿ without changing its convexity

Theorem:

Epigraph

Definition [epigraph]:

Theorem [convexity of the epigraph]:

Convex Function Properties

Oth order characterization

This is useful, because we only need to check the convexity of 1D functions.

Graph courtesy of Prof. Robert Freund

Convex Function Properties

1st order characterization

The 1st oder Taylor approximation is a global underestimator of f.

Corollary:

Convex Function Properties

2nd order characterization

Lemma

Jensen's inequality

Theorem

Proving a function convex

- □ Use definition directly
- □ Prove that epigraph is convex via set methods
- □ 0th, 1st, 2nd order convexity properties
- Construct f from simpler convex fns using convexity-preserving ops

Convexity-preserving fn ops

Nonnegative weighted sum

If f_1 , $f_2 \text{ cvx}$, $w_i \ge 0 \Rightarrow h(x) = w_1 f_1(x) + w_2 f_2(x) \text{ cvx}$

Pointwise max/sup

If f, g CVX,
$$\Rightarrow m(x) = \max\{f(x), g(x)\}$$
 CVX

Extension of pointwise max/sup

If
$$f(x, y)$$
 is convex in x for each y
 $\Rightarrow g(x) = \sup_{y \in C} f(x, y)$ is convex in x ,
provided $g(x) > -\infty$ for some x .

Convexity-preserving fn ops

Affine map

If $f : \mathbb{R}^n \to \mathbb{R}$ is cvx, $\Rightarrow g(x) = f(Ax + b)$ is cvx, where $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$.

Composition

- If f, g are cvx, and g is non-decreasing, $\Rightarrow h(x) = g(f(x))$ is cvx.
- If f is concave and g is cvx and non-increasing, $\Rightarrow h(x) = g(f(x))$ is cvx.

Perspective map

If f(x) is convex, $\Rightarrow g(x,t) = tf(x/t)$ is convex.

Summary

Convex sets

- Representation:
 - convex hull, intersect hyperplanes
- supporting, separating hyperplanes
- operations that preserve convexity

Convex functions

- epigraph
- 0 orders, 1st order, 2nd order conditions
- operations that preserve convexity