Administrivia

 $\hfill \hfill \hfill$

Simplex Algorithm in 1 Slide

Canonical form:
$$Z = Z_0 T C_{n+1} X_{n+1} \dots + C_n X_n = -Z_0$$

 $+ C_{m+1} X_{m+1} + \dots + C_j X_j + \dots + C_n X_n = -Z_0$
 $+ \alpha_{1, m+1} X_{m+1} + \dots + \alpha_{1j} X_j + \dots + \alpha_{mn} X_n = w_1$
 X_2
 $X_m + \alpha_{mn} m+1 X_{m+1} + \dots + \alpha_{mj} X_j + \dots + \alpha_{mn} X_n = w_n$
If we do pivot in $A_{r,s} > 0$, where $c_s < 0$ $X_s IN X_r OUT$
New cost value: $0 \qquad V \qquad V \qquad V \qquad V = X_1 - A_{1s} X_s > 0$
 $Z = Z_c + w_r \frac{C_s}{A_{rs}}$ $V = X_m - A_{ms} X_s > 0$
New b vector: $0 \qquad V \qquad V \qquad V = X_m - A_{ms} X_s > 0$
 $Z = w_n - A_{ms} X_s > 0$
 $Z = W_1 + w_r - A_{ms} X_s > 0$
 $Z = W_1 + w_r - A_{ms} X_s > 0$
 $Z = W_1 + w_r - A_{ms} X_s > 0$
 $X_{m} = w_m - A_{ms} X_s > 0$
 $X_{m} = W_1 - A_{ms} X_s > 0$
 $X_{m} = w_m - A_{ms} X_s > 0$
 $X_{m} = W_1 - A_{ms} X_s = 0$
 $X_{m} =$

The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is available to start the algorithm...

The Simplex Algorithm Phase I

Example

$$\begin{array}{c} 2X_{1} + 1X_{2} + 2X_{3} + X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} = 0 \end{array}$$

$$\begin{array}{c} X_{1} + 1X_{2} + 2X_{3} + X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} = 0 \end{array}$$

$$\begin{array}{c} X_{1} + 1X_{2} + 13X_{3} + 3X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 3X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 3X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 3X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 3X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 4X_{4} + 4X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{1} + 1X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{2} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} + 13X_{3} + 13X_{3} + 13X_{3} + 13X_{4} + 13X_{5} = \mathcal{Z} \longrightarrow MIN \\ X_{3} + 13X_{3} +$$

Goal: We want to find a feasible solution

Phase I:

- (i) Forget the cost function $c^T x$.
- (ii) Introduce $X_6, X_7 \downarrow 0$. [One variable for each row]

(iii) Solve MIN
$$X_{g} + X_{T} = W$$

 $X_{i} \ge 0 \ \hat{c} = 1...7$
 $g.T \quad 4X_{1} + 2X_{2} + 13X_{3} + 3X_{4} + X_{5} + X_{6} + 0X_{T} = 17$
 $X_{1} + X_{2} + 5X_{3} + X_{4} + X_{5} + 0X_{6} + X_{7} = 7$

The Simplex Algorithm Phase I

$$\begin{array}{c} & \text{MIN } X_{\text{G}} + X_{\text{F}} = U \\ & X_{1} \neq 0 \ \hat{c} = 1.. \neq \\ 9.T \quad 4X_{1} + 2X_{2} + 13X_{3} + 3X_{4} + X_{5} + X_{6} + 0X_{\text{F}} = 17 \\ & X_{1} + 2X_{2} + 13X_{3} + 3X_{4} + X_{5} + 0X_{6} + X_{\text{F}} = 7 \end{array} \right\} (\times 2)$$

Theorem: (*2) has feasible optimal solution such that $X_6=X_7=0$ iff (*1) has feasible solution

Remarks:

- □ (*2) is easy to convert to a feasible canonical solution (We will see)
- ❑ We can find its optimal solution (X₆=X₇=0) with the Phase II algorithm This is a feasible solution of (*1)

$$\begin{array}{c} & \text{MIN} \quad X_{e} + X_{\mp} = U \\ & X_{i} > 0 \quad \dot{c} = 1..7 \\ & 9.T \quad 4 \times 1 + 2 \times 2 + 13 \times 3 + 3 \times 4 + \times 5 + \times e + 0 \times 7 = 17 \\ & X_{1} + \quad X_{2} + 5 \times 5 + \times 4 + \times 5 + 0 \times e^{+} \times 7 = 7 \end{array} \right\} (\times 2)$$

Basic variable	Objective (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	Х ₆	X ₇	RHS	
	1	0	0	0	0	0	1	1	0	5-7
	0	4	2	13	3	1	1	0	17	<u> </u> Г
	0	1	1	5	1	1	0	1	7	\mathcal{I}

It's easy to convert this to a feasible canonical form:

Basic variable	Objective (-w)	X ₁	X ₂	X ₃	X ₄	Х ₅	Х ₆	X ₇	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

CANONICAL FORM

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	Х ₆	X ₇	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X 7	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X ₆	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7
				U.					

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	Х ₆	X7	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

Let us simplify this Table a little:

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	Х ₅	X ₆	X ₇	RHS
-W	1	-7/13	-3/13	0	2/13	-8/13	18/13	0	-6/13
X ₃	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-7/13	3/13	0	-2/13	8/13	-5/13	1	6/13
						T			

-8/13 IS THE SHALLEST AMONGALL C; $(0) = X_5 IN$ $\frac{6/13}{8/13} \begin{pmatrix} \frac{17/13}{1/13} = X_7 \text{ out}$

9

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	0	0	0	0	0	1	1	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

All the relative costs are nonnegative) optimal feasible solution. Phase I is finished.

$$-w + x_{c} + x_{7} = 0$$

$$X_{3} = 5/4$$

$$X_{5} = 3/4$$

$$X_{1}, x_{2}, x_{4}, x_{6}, x_{7} = 0$$

$$FEASIBLE MASIC SOLUTION$$

$$OF THE ORIGINAL(*1) PROBLEM$$

$$W$$

$$PHASE I CAN BE STARTED$$

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	0	0	0	0	0	1	1	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

ORIGINAL COST FUNCTION: Z= 2X1+1X2+2X3+X4+4X5 3MIN X30

B. var	Obj (-z)	X ₁	X ₂	X ₃	X ₄	Х ₅	Х ₆	X ₇	RHS
-Z	1	2	1	2	1	4	0	0	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

B. var	Obj (-z)	X ₁	X ₂	X ₃	X ₄	Х ₅	Х ₆	X ₇	RHS
-Z	1	2	1	2	1	4	0	0	° Kar
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4 / 2*
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4 -4x

Make it to canonical form and continue with Phase II...

Do not make pivots in the column of X_6 and X_7

Simplex Algorithm with Matlab

- f = [-5 -4 -6]';
- $A = \begin{bmatrix} 1 & -1 & 1 \\ 3 & 2 & 4 \\ 3 & 2 & 0 \end{bmatrix};$
- b = [20 42 30]';
- lb = zeros(3,1);

options = optimset('LargeScale','off','Simplex','on');

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb,[],[],options);

Relevant Books

- □ Luenberger, David G. *Linear and Nonlinear Programming*. 2nd ed. Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.
- Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear Optimization. Athena Scientific Press, 1997. ISBN: 1886529191.
- Dantzig, Thapa: Linear Programming

Summary

□ Linear programs:

- standard form,
- canonical form
- □ Solutions:
 - Basic, Feasible, Optimal, Degenerate
- □ Simplex algorithm:
 - Phase I
 - Phase II
- □ Applications:
 - Pattern classification

Convex Optimization CMU-10725

4. Convexity

Barnabás Póczos & Ryan Tibshirani

Goal of this lecture

Review of Convex sets & Convex functions

- Definition
- Examples
- Basic properties

Books to Read:

- Boyd and Vandenberghe: Convex Optimization, Chapters 2 & 3
- Rockafellar: Convex Analysis

Line and Line Segments

Definition [Line]:

$$\{x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R}\}_{X_1}$$

Definition [Line segment]: $L | N \hat{E} + \hat{C} \in [0, \bar{D}]$

$$\{ x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in [0, 1] \}$$

Affine Sets

Definition [Affine set]:

A set *C* is affine if for any $x_1, x_2 \in C$ the line through x_1 and x_2 is in *C*, i.e. $\theta x_1 + (1 - \theta) x_2 \in C$, $(\theta \in \mathbb{R})$

Definition [Affine hull of set C]:

 $AFF[C] = \{ e_i X_i + \dots + e_e X_e \} \begin{cases} X_i \in C \\ g \\ \xi e_i = 1 \end{cases}$

Theorem [Affine hull]:

The Aff[C] is the smallest affine set that contains C

Affine Sets Example

Example [Solutions of linear equations]:

The solution set of a system of linear equations is an affine set

Solution set:

$$C= f(X) | A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m}$

Proof:

IF $A_{X_1} = b$ $y = A[e_{X_1} + (1 - e)X_2] = b$ $A_{X_2} = b$ $e \in \mathbb{R}$

20

Boundaries

Definition [x on boundary of C (∂ C)]: FOR GHALL ENOUGH E>O: $\mathcal{B}(X, \varepsilon) \cap C \neq \emptyset$ $\mathcal{B}(X, \varepsilon) \cap C \neq \emptyset$

Definition [x in interior of C]:

Definition [*relative* interior (rel int C)]:

7

Boundaries

Definition [closure of C (cl C)]:

 $CL C = C \cup DC$

Definition [*relative* boundary of C (rel ∂C)]:

Open and Closed Sets

Definition [C closed]:

Definition [C open]:

 $\partial C \cap C = \emptyset$

Definition [C compact]: CLOSED AND BOUNDED [IN IR^h]

Convex sets

- empty set: \mathcal{Q} singleton set: $\{\chi_0\}$ complete space: \Re^A
- □ lines: $\{X \mid X = \theta X, + (F \theta) X_2, \theta \in \mathbb{R}\}$ □ line segments: $\{X \mid X = \theta X, + (I - \theta) X_2, \theta \in [0, 1]$ □ hyperplanes: $\{X \in \mathbb{R}^n\} \ a^T X = \theta^T\} \ a \in \mathbb{R}^n, \theta \in \mathbb{R}$ □ halfspaces: $\{X \in \mathbb{R}^n\} \ a^T X = \theta^T\} \ a \in \mathbb{R}^n, \theta \in \mathbb{R}$

Polyhedron: the solution set of a finite number of linear equalities and inequalities

$$\begin{split} \mathcal{P} = \mathcal{L} \times | a_j^* \times \mathcal{L} \psi_j , j = 1, \dots, m \\ c_j^* \times = \mathcal{L}_j , j = 1, \dots, p^* \mathcal{L}_j \\ \text{Matrix notation: } \mathcal{P} = \mathcal{L} \times | A_x \mathcal{L} \psi, C_x = \mathcal{L}_j \end{split}$$

Polytope: bounded polyhedron

Intersection of halfspaces

& hyperplanes

Convex hull

Definition [Convex hull]: $CONV[C] = \{G, X, +... + G_{k}X_{k} | X_{i} \in C, e_{i} \ge 0 \forall i = 1...k$ $\xi = 1, k \in \mathbb{Z} + \}$ i = 1

Convex hull

Convex hull properties:

CONV[C] 15 THE GMALLEST CONVEX GET THAT CONTAING C

$$C \in CONV(C)$$

•

∀C, C' CONVEX SETS. IF C C C' =) CONV[c] = C'

□ Simplex: $CONV[V_0,...,V_n] = \left\{ \begin{array}{c} \frac{\theta}{2} \\ \frac{1}{2} \\ \frac{1}{2$ 9+1 V1-V0, . V2K ろり x ,,,,,,

Convex Combination

$$CONV[C] = \{G_1, X_1, T_{...} + G_k, X_k | X_i \in C, e_i \ge 0 \quad \forall i = 1...k \\ \underset{i=1}{\overset{2}{\overset{2}{\overset{2}{}}} e_i = 1, k \in \mathbb{Z} + \}$$

Infinite many sums

$$C CONVEX = \sum_{i=1}^{z} \mathcal{B}_{i} X_{i} \in C$$

$$X_{1}, X_{2}, \dots \in C$$

$$G_{1}, G_{2}, \dots \geq O$$

$$E \mathcal{B}_{i} = 1$$

$$S = 1$$

$$S = 1$$

$$S = 1$$

Integrals (Expected value) JP(X)X dX € C C ASSUMING THIS INTEGRAL EXIST Ep[X] € C 3 P: R > R DENSITY FUNCTION C CONVEX SET =)

31

Cones

Example: PSD matrices

Definition [Positive semi definite matrix]:

Theorem [eigenvalues]:

A symmetric matrix A is positive definite iff all its eigenvalues are positive

Partial ordering of square matrices:

For arbitrary square matrices M, N we write $M \ge N$ if $M - N \ge 0$; i.e., M - N is positive semi-definite.

Example: PSD matrices

Theorem [Cone of PSD matrices]:

The set of symmetric, PSD matrices form a convex cone:

$$S_{+}=dA\in\mathbb{R}^{n\times n}|A \ge 0$$

Proof:

$$A, B \in S_{+}^{n}$$

$$= \sum_{x \in \mathbb{Z}} \left[eA + (1 - e)B \right] x = e x^{T}Ax + (1 - e) x^{T}Bx = e^{T}Ax = e^{T}Ax + (1 - e) x^{T}Bx = e^{T}Ax = e^{T$$

Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]

Dual representation

Theorem: [Representation of a closed convex set with half spaces]

- \Box Translation C+6-
- $\Box Scaling \qquad \measuredangle C$
- □ Intersection C,D CONVEX => CND CONVEX CAN BE EXTENDED TO INFINITE NUMBER OF SETS IF Sd 15 A CONVEX BET Vale A => A Sd 15 CONVAX AEX

□ Affine function

• E.g. projection, dropping coordinates $IF \subset CR^n CONVEX, A \in R^{m \times n}, U \in R^n$ $\Rightarrow AC + U = \{Ax + U | x \in C \} \subseteq R^n : (CONVEX)$

□ Set sum

$$C_1 + C_2 = \{ C_1 + C_2 | C_1 \in C_1, C_2 \in C_2 \}$$

Direct sum $C_1 \times C_2 = d(c_1, c_2) \in \mathbb{R}^n$, $c_1 \notin C_1$, $c_2 \notin C_2$

□ Perspective projection (pinhole camera) IF $C \subset \mathbb{R}^{n} \times \mathbb{R}_{++}$ ¹⁵ $A \subset \mathcal{O} \times \mathcal{U} \in X$ GET, THEN P(C) 15 $A \cup S \cap \mathcal{U} \in X$ $P(X) = P(X_{1}, X_{2}, ..., X_{n}, t) = (X_{1}/t, X_{2}/t..., X_{n}/t) \in \mathbb{R}^{n}$ $P(Z, t) = \frac{Z}{T}$

□ Linear-fractional function

(perspective function with affine function)

$$f(x) = \frac{Ax+b}{C^{T}x+d} \quad A \in \mathbb{R}^{m \times n} \quad C \in \mathbb{R}^{n}$$

$$d \in \mathbb{R}$$

$$Dom f = \int x | C^{T}x + d > 0 \frac{2}{3}$$

Theorem: [Image of Linear fractional function]