Administrivia

Simplex Algorithm in 1 Slide

Canonical form:

$$-Z + C_{m+1}X_{m+1} + ... + C_{j}X_{j} + ... + C_{n}X_{n} = -Z_{0}$$

$$+ Q_{1, m+1}X_{m+1} + ... + Q_{1j}X_{j} + ... + Q_{1n}X_{n} = W_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3} + Q_{m, m+1}X_{m+1} + ... + Q_{m, m}X_{j} + ... + Q_{mn}X_{n} = W_{m}$$

$$X_{m} + Q_{m, m+1}X_{m+1} + ... + Q_{m, m}X_{j} + ... + Q_{mn}X_{n} = W_{m}$$

If we do pivot in $A_{r,s} > 0$, where $c_s < 0$ X_5 X_7 OUT

New cost value:
$$O \subset V$$

$$\widetilde{Z} = Z_c + \widetilde{V}_T - C_S$$

$$\widetilde{\Delta}_{TS}$$

New b vector:

$$\tilde{\psi}_{j} = \psi_{j} + \psi_{r} - \frac{A_{js}}{A_{rs}} = 0$$

ost value:
$$O \quad C \quad Constraints$$
 $X_1 = U_1 - A_{15} X_5 \ge C$
 $X_2 = Z_2 + U_4 \quad C_5 \quad X_m = U_m - A_m S X_5 \ge C$

vector: $V_3 = MIN(\frac{U_1}{A_{15}})$

$$\tilde{U}_{j} = U_{j} + U_{r} - \frac{A_{j}s}{A_{r}s} = 0$$

$$LET = ARGMIN \frac{U_{i}}{A_{i}s}$$

$$\begin{cases} i | A_{i}s > 0 \end{cases}$$

The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is available to start the algorithm...

The Simplex Algorithm Phase I

Example

$$2X_{1} + 1X_{2} + 2X_{3} + X_{4} + 4X_{5} = 7$$

$$5.7 4X_{1} + 2X_{2} + 13X_{3} + 3X_{4} + X_{5} = 17$$

$$X_{1} + X_{2} + 5X_{3} + X_{4} + X_{5} = 7$$

$$X_{1} + X_{2} + 5X_{3} + X_{4} + X_{5} = 7$$

Goal: We want to find a feasible solution

Phase I:

- (i) Forget the cost function c^Tx .
- (ii) Introduce $X_6, X_7 \ge 0$. [One variable for each row]

(iii) Solve
$$\gamma_{1}N_{1} \times g + \chi_{7} = W$$

 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{4} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{4} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{4} \times g = 0$
 $\chi_{5} \times g = 0$
 $\chi_{1} \times g = 0$
 $\chi_{2} \times g = 0$
 $\chi_{3} \times g = 0$
 $\chi_{4} \times g = 0$
 $\chi_{5} \times g = 0$

The Simplex Algorithm Phase I

$$y_1N \quad \chi_{g} + \chi_{7} = W$$

 $\chi_{i} = 0$ $i = 1... \neq$
 $4\chi_{1} + 2\chi_{2} + 13\chi_{3} + 3\chi_{4} + \chi_{5} + \chi_{6} + 0\chi_{7} = 17$
 $\chi_{1} + \chi_{2} + 5\chi_{3} + \chi_{4} + \chi_{5} + 0\chi_{6} + \chi_{7} = 7$
 $\chi_{1} + \chi_{2} + 5\chi_{3} + \chi_{4} + \chi_{5} + 0\chi_{6} + \chi_{7} = 7$

Theorem: (*2) has feasible optimal solution such that $X_6=X_7=0$ iff (*1) has feasible solution

Remarks:

- □ (*2) is easy to convert to a feasible canonical solution (We will see)
- \square We can find its optimal solution ($X_6=X_7=0$) with the Phase II algorithm This is a feasible solution of (*1)

MIN
$$X_{c} + X_{7} = W$$

 $X_{i} > 0$ $i = 1... 7$
 $4X_{1} + 2X_{2} + 13X_{3} + 3X_{4} + X_{5} + X_{6} + 0X_{7} = 17$
 $X_{1} + X_{2} + 5X_{3} + X_{4} + X_{5} + 0X_{6} + X_{7} = 7$

$$(\times 2)$$

Basic variable	Objective (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS	
	1	0	0	0	0	0	1	1	0	C
	0	4	2	13	3	1	1	0	17	
	0	1	1	5	1	1	0	1	7	,

It's easy to convert this to a feasible canonical form:

Basic variable	Objective (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X_6	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

CANONICAL FORM

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X_6	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B. var	Obj. (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X 7	RHS
-W	1	-5	-3	-18	-4	-2	0	0	-24
X_6	0	4	2	13	3	1	1	0	17
X ₇	0	1	1	5	1	1	0	1	7

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X_3	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-5+18/13*4	-3+18/13*2	0	-4+18/13*3	-2+18/13	18/13	0	-24+18/13*7
X_3	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-5/13*4	1-5/13*2	0	1-5/13*3	1-5/13	-5/13	1	7-5/13*7

Let us simplify this Table a little:

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	-7/13	-3/13	0	2/13	-8/13	18/13	0	-6/13
X_3	0	4/13	2/13	1	3/13	1/13	1/13	0	17/13
X ₇	0	1-7/13	3/13	0	-2/13	8/13	-5/13	1	6/13

0 1-7/13 3/13 0 -2/13 8/13 -5/13 1 6/13
-8/13 15 THE SHALLEST AMONGALL C;
$$\langle 0 \rangle = \rangle \times_5 IN$$

 $\frac{6/13}{8/13} \angle \frac{17/13}{1/13} = \rangle \times_7 OVI$

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	0	0	0	0	0	1	1	0
X_3	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X_5	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

All the relative costs are nonnegative \Rightarrow optimal feasible solution.

Phase I is finished.

Is finished.

$$-w + x_c + x_7 = 0$$

$$x_3 = \frac{5}{4}$$

$$x_5 = \frac{5}{4}$$

$$x_1, x_2, x_4, x_6, x_7 = 0$$

$$FEASIBLE MASIC SOLUTION

of THE ORIGINAL (**1) PROBLEM

PHASE II CAN BE STARTED$$

B. var	Obj (-w)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-W	1	0	0	0	0	0	1	1	0
X_3	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X_5	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

ORIGINAL COST FUNCTION: Z= 2X1+1X2 +2X3+X4+4X5 >MIN
X30

B. var	Obj (-z)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-Z	1	2	1	2	1	4	0	0	0
X ₃	0	3/8	1/8	1	1/4	0	-1/8	0	5/4
X_5	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4

B. var	Obj (-z)	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS
-Z	1	2	1	2	1	4	0	0	0 K25
X_3	0	3/8	1/8	1	1/4	0	-1/8	0	5/4)-2*
X ₅	0	-7/8	3/8	0	-1/4	1	-5/8	1/8	3/4 -4 X

Make it to canonical form and continue with Phase II...

Do not make pivots in the column of X_6 and X_7

Simplex Algorithm with Matlab

Relevant Books

- □ Luenberger, David G. *Linear and Nonlinear Programming*. 2nd ed. Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.
- ☐ Bertsimas, Dimitris, and John Tsitsiklis. *Introduction to Linear Optimization*. Athena Scientific Press, 1997. ISBN: 1886529191.
- Dantzig, Thapa: Linear Programming

Summary

- ☐ Linear programs:
 - standard form,
 - canonical form
- ☐ Solutions:
 - Basic, Feasible, Optimal, Degenerate
- ☐ Simplex algorithm:
 - Phase I
 - Phase II
- ☐ Applications:
 - Pattern classification

Convex Optimization CMU-10725

4. Convexity Part I

Barnabás Póczos & Ryan Tibshirani

Goal of this lecture

- □ Review of Convex sets & Convex functions
 - Definition
 - Examples
 - Basic properties

Books to Read:

- **Boyd and Vandenberghe**: Convex Optimization, Chapters 2 & 3
- Rockafellar: Convex Analysis

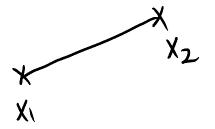
Line and Line Segments

Definition [Line]:

$$\{x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R}\}$$

Definition [Line segment]: LINE + Ce[0,1]!

$$\{x \in \mathbb{R}^n | x = \theta x_1 + (1 - \theta) x_2, \theta \in [0, 1]\}$$



Affine Sets

Definition [Affine set]:

A set C is affine if for any $x_1, x_2 \in C$ the line through x_1 and x_2 is in C, i.e. $\theta x_1 + (1 - \theta)x_2 \in C$, $(\theta \in \mathbb{R})$

Definition [Affine hull of set C]:

$$C \in \mathbb{R}^n$$
 $AFF[C] = \{e, X, +... + e_n X_n \mid X_1, ..., X_2 \in C, \xi \in i=1\}$

Theorem [Affine hull]:

The Aff[C] is the smallest affine set that contains C

Affine Sets Example

Example [Solutions of linear equations]:

The solution set of a system of linear equations is an affine set

Solution set:

Proof:

$$\begin{array}{ccc}
|F| & \Delta x_1 = & C \\
\Delta x_2 = & C
\end{array}$$

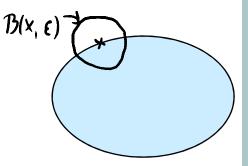
$$\Delta \left[\left(\frac{E}{A} \right) + \left(\frac{1-e}{A} \right) x_2 \right] = C \\
G \in \mathbb{R}$$

Boundaries

Definition [x on boundary of C (∂C)]:

FOR SMALL ENOUGH E>O: B(X, E) 1 C + 9

& B(X, E) 1 C C + 9



Definition [x in interior of C]:

Definition [relative interior (rel int C)]:

Boundaries

Definition [closure of C (cl C)]:

Definition [*relative* boundary of C (rel ∂C)]:

Open and Closed Sets

Definition [C closed]:

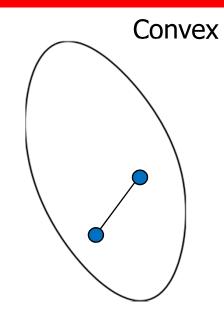
Definition [C open]:

$$\partial C \cap C = \emptyset$$

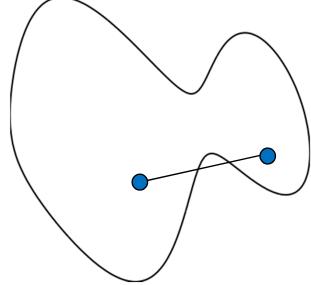
Definition [C compact]:

CLOSED AND BOUNDED [IN IR"]

Convex sets



Non convex



Definition [Convex set]:
$$\forall x_1, x_2 \in C \quad \forall e \in [\circ, 1]$$

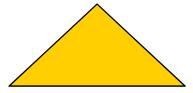
$$\forall x_1, x_2 \in C \quad \forall x_1, x_2 \in C \quad \forall x_2 \in C$$
Definition [Strictly convex set]: $\forall x_1 \neq x_2 \in C \quad \forall x_1 \neq x_2 \in C$

$$\forall x_1 \neq x_2 \in C \quad \forall x_2 \in C \quad \forall x_1 \neq x_2 \in C \quad \forall x_2 \in C \quad \forall x_3 \neq x_4 \in C$$

Definition [Strictly convex set]:

$$G_{X_1} + (1 - \varepsilon) X_2 \in INT(C) \forall x_1 \neq x_2 \in C \quad \theta \in (c, 1)$$

Example [Convex, but not strictly convex]:



□ empty set: \emptyset □ singleton set: $\{X_0\}$ □ complete space: \mathbb{R}^d □ lines: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ line segments: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ hyperplanes: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ hyperplanes: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ halfspaces: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ halfspaces: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ halfspaces: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ halfspaces: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$ □ halfspaces: $\{X_1 X = \theta X_1 + (1 - \theta) X_2, \theta \in \mathbb{R}^d\}$

25

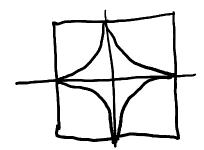
☐ Euclidian balls:

$$\begin{cases} X \in \mathbb{R}^n | \|X - X_0\|_2 \leq T \end{cases} = \mathcal{B}(X_0, T)$$

$$CONVEX$$

 $\Box L_{p} \text{ balls, } p \ge 1$ $\begin{cases} \chi \in \mathbb{R}^{n} | \| X - X_{o} \| p \le \gamma \end{cases}$ $\| X \| p = \left(\frac{2}{2} | X_{o} | p \right)^{1/p}$

 \Box L_p balls 0<p<1



NOT CONVEY!

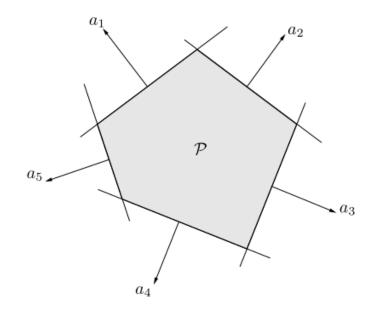
□ Polyhedron: the solution set of a finite number of linear equalities and inequalities

$$\mathcal{G} = \{ x \mid \alpha j \mid x \in \mathcal{V}_{j,j} = 1, \dots, m \}$$

$$C_{j}^{T} \times \{ x \in \mathcal{V}_{j,j} = 1, \dots, m \}$$

Matrix notation: $P = \{x \mid A_x \subseteq b, C_x = d\}$

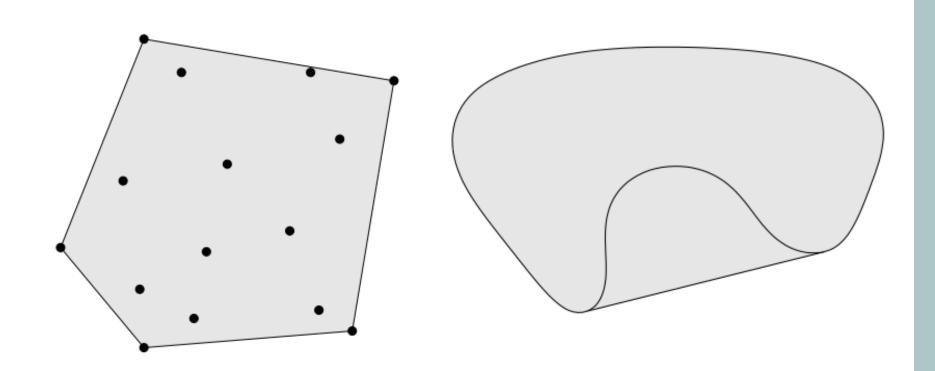
☐ Polytope: bounded polyhedron



Intersection of halfspaces

& hyperplanes

Convex hull



Definition [Convex hull]:

nition [Convex hull]:

$$CONV[C] = \{6, x, + ... + Conv[C] \} \{i \in C, e_i \geq 0 \ \forall i = 1... \}$$

$$\begin{cases} \{e_i = 1, e \in \mathbb{Z} + \}\} \\ i = 1 \end{cases}$$

Convex hull

Convex hull properties:

CONV[C] IS THE SMALLEST CONVEX GET THAT CONTAINS C

CONV[C] 15 CONVEX

C E CONU (C)

VC, C' CONVEX SETS. IF C CC' =) CONV[c] €C!

☐ Simplex:



Convex Combination

$$CONV[C] = \{6, x, +... + C_k x_k | x_i \in C, e_i \ge 0 \ \forall i = 1...k \}$$

$$= \{6, x, +... + C_k x_k | x_i \in C, e_i \ge 0 \ \forall i = 1...k \}$$

$$= \{6, x, +... + C_k x_k | x_i \in C, e_i \ge 0 \ \forall i = 1...k \}$$

$$= \{6, x, +... + C_k x_k | x_i \in C, e_i \ge 0 \ \forall i = 1...k \}$$

Infinite many sums

C CONUEX =)
$$\xi \theta_i X_i \in C$$

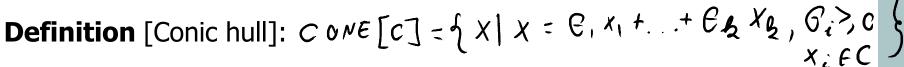
 $X_1, X_2, ... \in C$
 $G_1, G_2, ... \geq C$
 $\xi \theta_i = 1$
 $\xi \theta_i = 1$

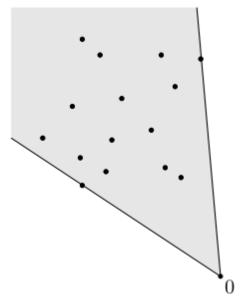
Integrals (Expected value)

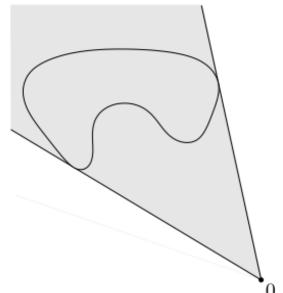
Cones

Definition [Cone]: $X \in C$ $\Rightarrow C \times C$

Definition [Convex Cone]: CONE & CONEX







Example: PSD matrices

Definition [Positive semi definite matrix]:

Theorem [eigenvalues]:

A symmetric matrix A is positive definite iff all its eigenvalues are positive

Partial ordering of square matrices:

For arbitrary square matrices M, N we write $M \ge N$ if $M - N \ge 0$; i.e., M - N is positive semi-definite.

Example: PSD matrices

Theorem [Cone of PSD matrices]:

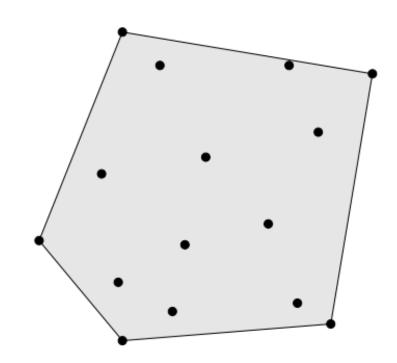
The set of symmetric, PSD matrices form a convex cone:

Proof:

A,
$$B \in S_{+}^{2} \Rightarrow x^{T} \begin{bmatrix} 6A + (1-\epsilon)B \end{bmatrix} x = \underbrace{e}_{x}^{T} A_{x} + \underbrace{(1-e)}_{y}^{T} B_{x}$$

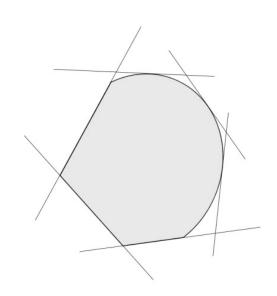
Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]



Dual representation

Theorem: [Representation of a closed convex set with half spaces]



- □ Translation C+6~
- \square Scaling $\angle C$
- □ Intersection C,D convex $\Rightarrow CDD$ convex

CAN BE EXTENDED TO INFINITE NUMBER OF SETS

IF Solis Convex SET Yard = AEX

- ☐ Affine function
 - E.g. projection, dropping coordinates

□ Set sum

$$C_1 + C_2 = \{c_1 + c_2 \mid c_1 \in C_1, c_2 \in C_2\}$$

Direct sum $C_1 \times C_2 = \{(c_1, c_2) \in \mathbb{R}^{n_{fm}}, c_1 \notin C_1, c_2 \notin C_2\}$

Convex Optimization CMU-10725

5. Convexity Part II

Barnabás Póczos & Ryan Tibshirani

Conevex Hull

Note:

- If C is a finite set, then this is closed polyhedron.
- If C contains infinite many points, then this can be open, closed, or none of them

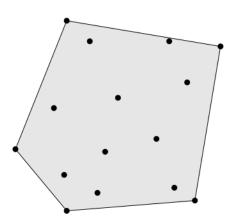
Theorem [Definition 2, Primal representation]

$$CONV[C] = \{6, x, +... + C_{k} \} \} \} \{i \in C, e_{i} \geq 0 \ \forall i = 1...k \}$$

A closed convex set is the intersection of all the closed half spaces containing S

Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]



$$CONV[C] = \{6, x, +... + C_{k} x_{k} | x_{i} \in C, e_{i} \geq 0 \ \forall i = 1...k \}$$

$$= \{6, x, +... + C_{k} x_{k} | x_{i} \in C, e_{i} \geq 0 \ \forall i = 1...k \}$$

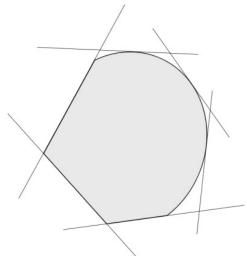
$$= \{6, x, +... + C_{k} x_{k} | x_{i} \in C, e_{i} \geq 0 \ \forall i = 1...k \}$$

$$= \{6, x, +... + C_{k} x_{k} | x_{i} \in C, e_{i} \geq 0 \ \forall i = 1...k \}$$

Convex hull = convex combination of possibly infinite many points in the set.

Dual representation

Theorem: [Representation of a closed convex set with half spaces]



A closed convex set is the intersection of all the closed half spaces containing S

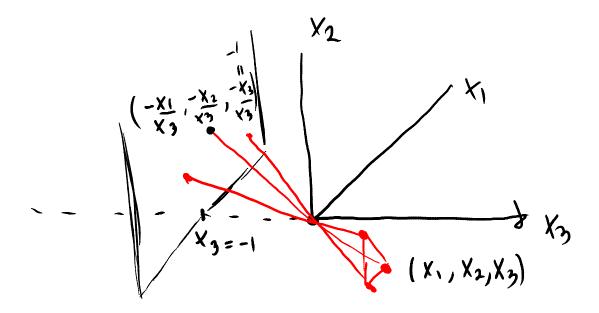
□ Perspective projection (pinhole camera)

IF
$$C C R^n \times R_{++}$$
 15 A CONVEX GET, THEN

$$P(C) \text{ 15 ALSO CONVEX}$$

$$P(x) = P(x_1, x_2, ..., x_n, t) = (x_1/t, x_2/t..., x_n/t) \in R^n$$

$$P(x) = P(x_1, x_2, ..., x_n, t) = \frac{1}{4}$$



☐ Linear-fractional function (perspective function with affine function)

$$f(x) = \frac{Ax+b}{C(x+d)} A \in \mathbb{R}^m \times n C \in \mathbb{R}^n$$

Theorem: [Image of Linear fractional function]

$$CCR^{n}CONVEX = f(C)CR^{n}CONVEX$$

Application: [Conditional probabilities]

$$C = \{x = (P_{11}, P_{12}, ..., P_{mn}) \in [0,1]^{m \times n}\}$$

$$U \in \{1,2,...,m\} \text{ alscrete}$$

$$V \in \{1,2,...,n\} \text{ RANDOM Pi; = PROB(U=i,V=i)}$$

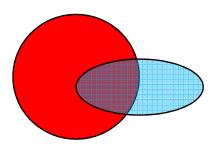
$$fij = \frac{Pij}{EPaj} = PROB(U=i,V=j)$$

$$D = \{M = \{f_{11}, f_{12}, ..., f_{mn}\} \in [0,1]^{m \times n}\}$$

$$D = \{M = \{f_{11}, f_{12}, ..., f_{mn}\} \in [0,1]^{m \times n}\}$$

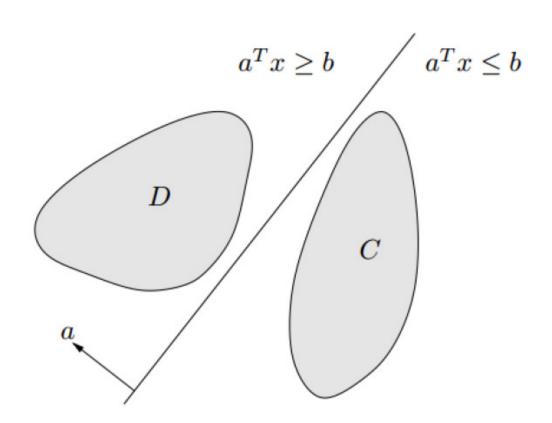
$$IF C \text{ 15 CONVEX } \Rightarrow D \text{ 15 CONVEX}$$

☐ Union doesn't preserve convexity



Separating hyperplane thm

Theorem: [Separating hyperplane theorem]



Separating hyperplane thm

Definition: [Strong separation]

$$a^{-1}\left[C_{1}+B(0,\varepsilon)\right]>0$$

$$a^{-1}\left[C_{2}+B(0,\varepsilon)\right]<0$$

Definition: [Proper separation],

IT'S NOT THE CASE THAT BOTH

$$C_1 \subseteq \{X : a^T x = b^1\}$$
 $C_2 \subseteq \{X : a^T x = b^1\}$

Definition: [Strict separation]

$$a^{T}x > b \quad x \in C_{1}$$
 $a^{T}x < b \quad x \in C_{2}$

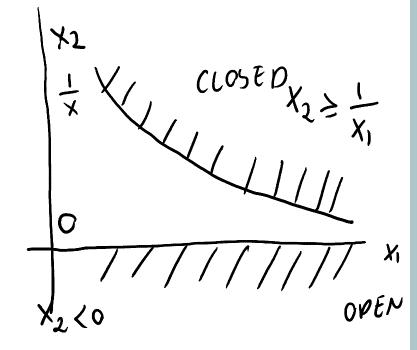
It "strictly separates" them if neither one touches the hyperplane.

Separating hyperplane thm

Theorem: [Strong separation theorem]

Counterexample:

Why do we need at least one bounded set?

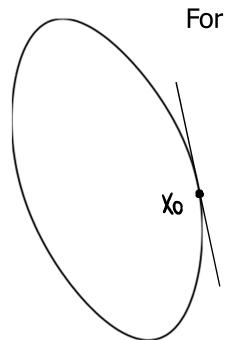


Separating hyperplane thm II

```
Theorem: [Strong separation theorem II]
 CI, CZ ARE NONTIMPTY CONVEX SETS
 CIERT, CZERT
3 HYPERPLANE SEPARATING CIAND C2 STRONGLY
INF ( | X, -X2 | 3 ) 0
X, EC, (
 \stackrel{\text{(C1, C2)}}{} > 0 
 \stackrel{\text{(C1, C2)}}{} > 0 
 \stackrel{\text{(C1, C2)}}{} > 0
```

Supporting hyperplane thm

Theorem: [Supporting hyperplane theorem]



For any point x_0 on the boundary of convex C

3 HYPERPLANÉ
$$\{x \mid aTx = b3\}$$

5.7. $\forall x \in C$ $aTx = aTX$ 0
 $aTX_0 = bT$

Theorem: [Partial converse of the supporting hyperplane theorem]

Proving a set convex

- ☐ Use definition directly
- Represent as convex hull
- ☐ Represent as the intersection of halfspaces
- ☐ Supporting hyperplane partial converse:
 - C closed, nonempty interior, has supporting hyperplane at all boundary points ⇒ C convex
- Build C up from simpler sets using convexity-preserving operations

Convex functions

Convex functions

Definition [convex function]:

A function
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is convex if
. Dom f is a convex set
. $f(ex + (i-e) \%) \in ef(x) + (i-6)f(\%)$
 $\forall x, y \in Dom f$
 $\forall e \in E^{o}$, \exists

Definition [strictly convex function]:

try convex function]:

$$f(EX + (FB)Y) < Ef(X) + (FE) f(Y)$$
 $f(X) + (FB)Y = F(X) + (FE) f(Y)$
 $f(X) + (FB)Y = F(X) + (FE) f(Y)$
 $f(X) + (FB)Y = F(X) + (FE) f(Y)$
 $f(X) + (FB)Y = F(X) + (FB)Y = F(X) + (FB)Y = F(X)Y = F($

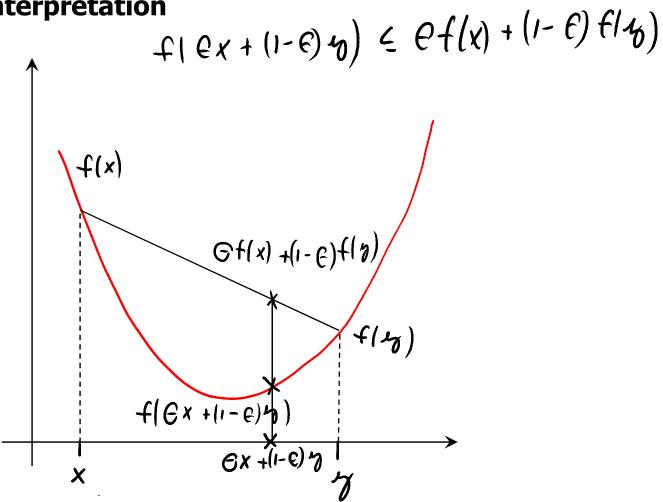
Concave functions

Definition [concave function]:

-f is convex

Convex functions

Geometric interpretation



Strongly convexity

Definition:[m-strongly convex function (m>0)

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge m ||x - y||_2^2$$

An equivalent condition:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

Without gradient: $\forall t \in [0, 1]$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{1}{2}mt(1-t)||x-y||_2^2$$

With Hessian:

$$\nabla^2 f(x) \succeq mI$$
 for all x in the domain

A strongly convex function is also strictly convex, but not vice-versa.

Examples

 $f(x) = x^4$: convex, strictly convex, not strongly convex.

f(x) = |x|: convex, not strictly convex.

Examples: Convex functions

Convex
$$|X|^p p > 1 CN P$$

 $f(X) = MAX(X_1,...,X_n)$ ON $P(X)$
 $ANY NORM$

· GEOMETRIC MEAN
$$f(x) = (\prod_{i=1}^{n} X_i)^{1/n}$$
 concave

Extended reals

We can extend f from dom f to Rⁿ without changing its convexity

LET
$$f: \mathbb{R}^n \to \mathbb{R}U_1^{log}$$

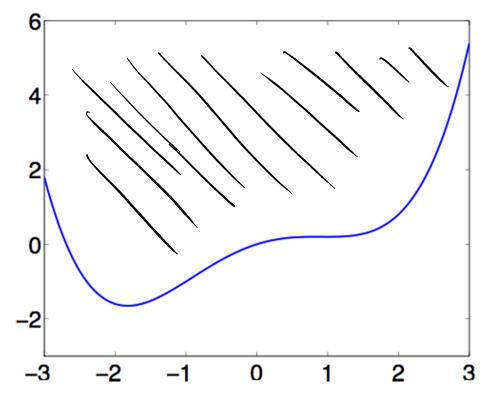
 $\overline{f}(x) = \begin{cases} f(x) & x \in Dom f \\ \emptyset & x \notin Dom f \end{cases}$

Theorem:

$$f$$
 15 CONVEX $(=)$ \tilde{f} 15 CONVEX $(=)$ $\tilde{f}(\epsilon_X + (1-\epsilon)\eta) = e\tilde{f}(x) + (1-\epsilon)\tilde{f}(\eta)$

Epigraph

Definition [epigraph]: EPI(f)={(X+): X+OcMf, +>f(x)}



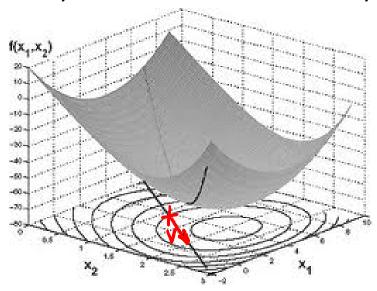
Theorem [convexity of the epigraph]:

Convex Function Properties

Oth order characterization

f convex
$$=$$
 $g(f) = f(x+tv)$ is convex
 $f:\mathbb{R}^n \to \mathbb{R}$ on Dom $g = g(f) \times f(f)$
 $\forall x \in DonfAnoV \in \mathbb{R}^n$

This is useful, because we only need to check the convexity of 1D functions.

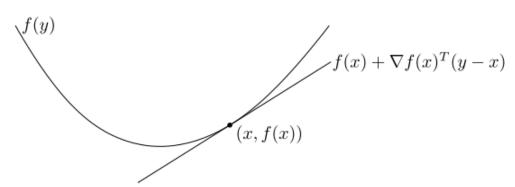


Graph courtesy of Prof. Robert Freund

Convex Function Properties

1st order characterization

· LET & DE A DIFFERENTIABLE FUNCTION



The 1st oder Taylor approximation is a global underestimator of f.

Convex Function Properties

2nd order characterization

```
· LET & BE TWICE OIFFERENTIABLE
· DOMF OPEN
```

fis convex (=)
$$\nabla^2 f(x) > 0$$
 $\forall x \in DOM f$

Lemma IF
$$\nabla^2 f(x) > 0 \ \forall x \in vom f \implies f 15 \ \text{STRICTLY CONVEX}$$

Jensen's inequality

Theorem

$$f_{16} convex \iff f(\lambda_{1}x_{1}+...+\lambda_{m}x_{m}) \in \lambda_{1}f(x_{1})+...+\lambda_{m}f(x_{m})$$

$$\forall \lambda_{1} \geqslant 0... \lambda_{m} \geqslant 0, \sum_{i=1}^{E} \lambda_{i} = 1$$

$$f_{15} convex \implies f(Ex) \in Ef(X)$$

$$\chi \sim P$$

$$f(Ex) \in Ef(X)$$

$$f(x) = f(x_{1}) + f(x_{2}) + f(x_{3})$$

$$f(Ex) \in ef(x_{1}) + f(x_{3}) + f(x_{3})$$

$$f(Ex) \in ef(x_{1}) + f(x_{3}) + f(x_{3}) + f(x_{3})$$

Proving a function convex

- ☐ Use definition directly
- ☐ Prove that epigraph is convex via set methods
- □ 0th, 1st, 2nd order convexity properties
- □ Construct f from simpler convex fns using convexity-preserving ops

Convexity-preserving fn ops

Nonnegative weighted sum

If
$$f_1$$
, f_2 cvx, $w_i \ge 0 \Rightarrow h(x) = w_1 f_1(x) + w_2 f_2(x)$ cvx

Pointwise max/sup

If
$$f, g \text{ cvx}, \Rightarrow m(x) = \max\{f(x), g(x)\} \text{ cvx}$$

Extension of pointwise max/sup

If
$$f(x,y)$$
 is convex in x for each y $\Rightarrow g(x) = \sup_{y \in C} f(x,y)$ is convex in x , provided $g(x) > -\infty$ for some x .

Convexity-preserving fn ops

Affine map

If $f: \mathbb{R}^n \to \mathbb{R}$ is cvx, $\Rightarrow g(x) = f(Ax + b)$ is cvx, where $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$.

Composition

If f, g are cvx, and g is non-decreasing, $\Rightarrow h(x) = g(f(x))$ is cvx.

If f is concave and g is cvx and non-increasing, $\Rightarrow h(x) = g(f(x))$ is cvx.

Perspective map

If f(x) is convex, $\Rightarrow g(x,t) = tf(x/t)$ is convex.

Summary

□ Convex sets

- Representation:
 - convex hull, intersect hyperplanes
- supporting, separating hyperplanes
- operations that preserve convexity

□ Convex functions

- epigraph
- 0 orders, 1st order, 2nd order conditions
- operations that preserve convexity