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Canonical form:

New cost value:

New b vector:

Simplex Algorithm in 1 Slide

If we do pivot in Ar,s >0, where cs<0
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The full Simplex Algorithm

So far we have assumed that a basic feasible solution in canonical form is

available to start the algorithm…
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The Simplex Algorithm Phase I

Example

Goal: We want to find a feasible solution

Phase I: 

(i) Forget the cost function cTx.

(ii) Introduce X6,X7 ≥ 0. [One variable for each row]

(iii) Solve
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The Simplex Algorithm Phase I

Theorem: (*2) has feasible optimal solution such that X6=X7=0

iff (*1) has feasible solution

� (*2) is easy to convert to a feasible canonical solution (We will see)

� We can find its optimal solution (X6=X7=0) with the Phase II algorithm 

This is a feasible solution of (*1)

Remarks:
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Tableaux

Basic 
variable

Objective 
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

1 0 0 0 0 0 1 1 0

0 4 2 13 3 1 1 0 17

0 1 1 5 1 1 0 1 7

It’s easy to convert this to a feasible canonical form:

Basic 
variable

Objective 
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7
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Tableaux

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B.
var

Obj.
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7
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Tableaux

Now, we can run the Phase 2 algorithm on this table to get a feasible solution of (*1):

B.
var

Obj.
(-w)

X1 X2 X3 X4 X5 X6 X
7

RHS

-w 1 -5 -3 -18 -4 -2 0 0 -24

X6 0 4 2 13 3 1 1 0 17

X7 0 1 1 5 1 1 0 1 7

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7
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Tableaux

Let us simplify this Table a little:

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -5+18/13*4 -3+18/13*2 0 -4+18/13*3 -2+18/13 18/13 0 -24+18/13*7

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-5/13*4 1-5/13*2 0 1-5/13*3 1-5/13 -5/13 1 7-5/13*7

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 -7/13 -3/13 0 2/13 -8/13 18/13 0 -6/13

X3 0 4/13 2/13 1 3/13 1/13 1/13 0 17/13

X7 0 1-7/13 3/13 0 -2/13 8/13 -5/13 1 6/13
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Tableaux

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

All the relative costs are nonnegative ⇒ optimal feasible solution.

Phase I is finished.
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Tableaux

B. var Obj
(-w)

X1 X2 X3 X4 X5 X6 X7 RHS

-w 1 0 0 0 0 0 1 1 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

B. var Obj
(-z)

X1 X2 X3 X4 X5 X6 X7 RHS

-z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4
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Tableaux

B. var Obj
(-z)

X1 X2 X3 X4 X5 X6 X7 RHS

-z 1 2 1 2 1 4 0 0 0

X3 0 3/8 1/8 1 1/4 0 -1/8 0 5/4

X5 0 -7/8 3/8 0 -1/4 1 -5/8 1/8 3/4

Make it to canonical form and continue with Phase II…

Do not make pivots in the column of X6 and X7
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f = [-5 -4 -6]';

A = [ 1 -1 1

3 2 4

3 2 0 ];

b = [20 42 30]';

lb = zeros(3,1);

options = optimset('LargeScale','off','Simplex','on');

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb,[],[],options);

Simplex Algorithm with Matlab
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Relevant Books

� Luenberger, David G. Linear and Nonlinear Programming. 2nd ed. 
Reading, MA: Addison Wesley, 1984. ISBN: 0201157942.

� Bertsimas, Dimitris, and John Tsitsiklis. Introduction to Linear 
Optimization. Athena Scientific Press, 1997. ISBN: 1886529191.

� Dantzig, Thapa: Linear Programming 
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Summary 

� Linear programs: 

� standard form, 

� canonical form

� Solutions: 

� Basic, Feasible, Optimal, Degenerate

� Simplex algorithm: 

� Phase I

� Phase II

� Applications: 

� Pattern classification



Convex Optimization

CMU-10725
4. Convexity Part I

Barnabás Póczos & Ryan Tibshirani 
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Goal of this lecture 

� Review of Convex sets & Convex functions

� Definition

� Examples

� Basic properties

Books to Read: 

• Boyd and Vandenberghe: Convex Optimization, Chapters 2 & 3

• Rockafellar: Convex Analysis
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Line and Line Segments 

Definition [Line]:

Definition [Line segment]:
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Affine Sets 

Definition [Affine set]:

Definition [Affine hull of set C]:

Theorem [Affine hull]:

The Aff[C] is the smallest affine set that contains C
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Affine Sets Example

Example [Solutions of linear equations]:

The solution set of a system of linear equations is an affine set

Solution set:

Proof:
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Boundaries

Definition [x in interior of C]:

Definition [relative interior (rel int C)]:

Definition [x on boundary of C (∂C) ]:



22

Boundaries

Definition [closure of C (cl C) ]:

Definition [relative boundary of C (rel ∂C) ]:
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Open and Closed Sets

Definition [C closed]:

Definition [C open]:

Definition [C compact]:
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Convex sets
Convex Non convex

Definition [Convex set]:

Definition [Strictly convex set]:

Example [Convex, but not strictly convex]:
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Examples of Convex Sets

� empty set:

� singleton set:

� complete space:

� lines:

� line segments: 

� hyperplanes:

� halfspaces:
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Examples of Convex Sets

� Euclidian balls:

� Lp balls, p≥ 1

� Lp balls 0<p<1  



27

Examples of Convex Sets

� Polyhedron:

Matrix notation:

� Polytope: bounded polyhedron 

the solution set of a finite number of linear 
equalities and inequalities

Intersection of halfspaces

& hyperplanes
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Convex hull

Definition [Convex hull]:
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Convex hull
Convex hull properties:



30

Examples of Convex Sets

� Simplex:
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Convex Combination

Infinite many sums

Integrals (Expected value)
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Cones

Definition [Convex Cone]:

Definition [Conic hull]:

Definition [Cone]:
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Example: PSD matrices

Definition [Positive semi definite matrix]:

A symmetric matrix A is positive definite iff all its eigenvalues are positive

Partial ordering of square matrices: 

For arbitrary square matrices M, N we write M ≥ N

if M − N ≥ 0; i.e., M − N is positive semi-definite. 

Theorem [eigenvalues]:
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Example: PSD matrices

Theorem [Cone of PSD matrices]:

The set of symmetric, PSD matrices form a convex cone:

Proof:
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Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]
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Dual representation

Theorem: [Representation of a closed convex set with half spaces]
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Convexity-preserving set operations

� Translation

� Scaling

� Intersection
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Convexity-preserving set operations

� Affine function

� E.g. projection, dropping coordinates

� Set sum

� Direct sum



Convex Optimization

CMU-10725
5. Convexity Part II

Barnabás Póczos & Ryan Tibshirani 
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Conevex Hull

Definition 1

Note: 

� If C is a finite set, then this is closed polyhedron.

� If C  contains infinite many points, then this can be open, closed, 

or none of them

Theorem [Definition 2, Primal representation]

A closed convex set is the intersection of all the 

closed half spaces containing S 



Convex set representation with convex hull

Theorem: [Representation of a closed convex set with a convex hull]

Convex hull = convex combination of possibly infinite many points in the set.



Dual representation

Theorem: [Representation of a closed convex set with half spaces]

A closed convex set is the intersection of all the closed half spaces containing S 
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Convexity-preserving set operations

� Perspective projection (pinhole camera)
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Convexity-preserving set operations

� Linear-fractional function

(perspective function with affine function)

Theorem: [Image of Linear fractional function]
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Convexity-preserving set operations

Application: [Conditional probabilities]
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Convexity-preserving set operations

� Union doesn’t preserve convexity
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Separating hyperplane thm

Theorem: [Separating hyperplane theorem]
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Separating hyperplane thm

Definition: [Strong separation]

Definition: [Proper separation], 

Definition: [Strict separation]

It   "strictly   separates"   them   if   neither   one   touches  

the hyperplane.  
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Separating hyperplane thm
Theorem: [Strong separation theorem]

Counterexample:

Why do we need at least 

one bounded set?
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Separating hyperplane thm II

Theorem: [Strong separation theorem II]
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Supporting hyperplane thm

For any point x0 on the boundary of convex C

Theorem: [Supporting hyperplane theorem]

Theorem: [Partial converse of the supporting hyperplane theorem]
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Proving a set convex

� Use definition directly

� Represent as convex hull

� Represent as the intersection of halfspaces

� Supporting hyperplane partial converse:

� C closed, nonempty interior, has supporting 
hyperplane at all boundary points ⇒ C convex

� Build C up from simpler sets using convexity-preserving 
operations
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Convex functions 
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Convex functions 

Definition [convex function]:

Definition [strictly convex function]:
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Concave functions 

Definition [concave function]:

-f is convex
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Convex functions 

Geometric interpretation



57

Strongly convexity

An equivalent condition:

Without gradient:

Definition:[m-strongly convex function (m>0)

With Hessian:

A strongly convex function is also strictly convex, but not vice-versa.
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Examples
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Examples: Convex functions

Convex

Concave
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Extended reals

We can extend f from dom f to Rn without changing its convexity

Theorem:
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Epigraph

Definition [epigraph]:

Theorem [convexity of the epigraph]:
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Convex Function Properties 

0th order characterization

This is useful, because we only need to check the convexity of 1D functions.

Graph courtesy of Prof. Robert Freund
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Convex Function Properties 

1st order characterization

Corollary:

The 1st oder Taylor approximation is a global underestimator of f.
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Convex Function Properties 

2nd order characterization

Lemma
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Jensen’s inequality

Theorem
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Proving a function convex

� Use definition directly

� Prove that epigraph is convex via set methods

� 0th, 1st, 2nd order convexity properties

� Construct f from simpler convex fns using 
convexity-preserving ops
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Convexity-preserving fn ops

Pointwise max/sup

Nonnegative weighted sum

Extension of pointwise max/sup
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Convexity-preserving fn ops

Composition

Affine map

Perspective map
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Summary

� Convex sets

• Representation:

• convex hull, intersect hyperplanes

• supporting, separating hyperplanes

• operations that preserve convexity

� Convex functions

• epigraph

• 0 orders, 1st order, 2nd order conditions

• operations that preserve convexity


