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Gradient descent

First consider unconstrained minimization of f : Rn → R, convex
and differentiable. We want to solve

min
x∈Rn

f(x),

i.e., find x? such that f(x?) = minx f(x)

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point

2



●

●

●

●

●

3



●

●

●

●

●

4



Interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖

2
2 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)
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Blue point is x, red point is
x+ = argminy∈Rn f(x) +∇f(x)T (y − x) + ‖y − x‖22/(2t)

6



Outline

Today:

• How to choose step size tk

• Convergence under Lipschitz gradient

• Convergence under strong convexity

• Forward stagewise regression, boosting
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Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Same example, gradient descent after 40 appropriately sized steps:
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This porridge is too hot! – too cold! – juuussst right. Convergence
analysis later will give us a better idea
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• Then at each iteration, start with t = 1, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22,

update t = βt

Simple and tends to work pretty well in practice
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Interpretation

(From B & V page 465)

For us ∆x = −∇f(x)
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Backtracking picks up roughly the right step size (13 steps):

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●

●
●

●
●

●●

●●●*

Here β = 0.8 (B & V recommend β ∈ (0.1, 0.8))
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Exact line search

Could also choose step to do the best we can along the direction
of the negative gradient, called exact line search:

t = argmin
s≥0

f(x− s∇f(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it’s usually not worth it
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Convergence analysis

Assume that f : Rn → R is convex and differentiable, and
additionally

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

I.e., ∇f is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖22

2tk

I.e., gradient descent has convergence rate O(1/k)

I.e., to get f(x(k))− f(x?) ≤ ε, need O(1/ε) iterations
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Proof

Key steps:

• ∇f Lipschitz with constant L ⇒

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

• Plugging in y = x+ = x− t∇f(x),

f(x+) ≤ f(x)− (1− Lt

2
)t‖∇f(x)‖22

• Taking 0 < t ≤ 1/L, and using convexity of f ,

f(x+) ≤ f(x?) +∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

= f(x?) +
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)
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• Summing over iterations:

k∑
i=1

(f(x(i))− f(x?)) ≤ 1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)
≤ 1

2t
‖x(0) − x?‖22

• Since f(x(k)) is nonincreasing,

f(x(k))− f(x?) ≤ 1

k

k∑
i=1

(
f(x(i))− f(x?)

)
≤ ‖x

(0) − x?‖22
2tk
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Convergence analysis for backtracking

Same assumptions, f : Rn → R is convex and differentiable, and
∇f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-
fies

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed
step size (β/L vs 1/L)
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Strong convexity

Strong convexity of f means for some d > 0,

∇2f(x) � dI for any x

Sharper lower bound than that from usual convexity:

f(y) ≥ f(x) +∇f(x)T (y − x) +
d

2
‖y − x‖22 all x, y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(d + L)
or with backtracking line search search satisfies

f(x(k))− f(x?) ≤ ckL
2
‖x(0) − x?‖22

where 0 < c < 1
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I.e., rate with strong convexity is O(ck), exponentially fast!

I.e., to get f(x(k))− f(x?) ≤ ε, need O(log(1/ε)) iterations

Called linear convergence, because looks linear on a semi-log plot:

(From B & V page 487)

Constant c depends adversely on condition number L/d (higher
condition number ⇒ slower rate)
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A look at the conditions

Lipschitz continuity of ∇f :

• This means ∇2f(x) � LI
• E.g., consider f(β) = 1

2‖y −Xβ‖
2
2 (linear regression). Here

∇2f(β) = XTX, so ∇f is Lipschitz with L = σ2max(X)

Strong convexity of f :

• Recall this is ∇2f(x) � dI
• E.g., consider f(β) = 1

2‖y −Xβ‖
2
2, with ∇2f(β) = XTX.

Now we need d = σ2min(X)

• If X is wide—i.e., X is n× p with p > n—then σmin(X) = 0,
and f can’t be strongly convex

• Even if σmin(X) > 0, can have a very large condition number
L/d = σmax(X)/σmin(X)
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A function f having Lipschitz gradient and being strongly convex
can be summarized as:

dI � ∇2f(x) � LI for all x ∈ Rn,

for constants L > d > 0

Think of f being sandwiched between two quadratics

This may seem like a strong condition to hold globally, over all
x ∈ Rn. But a careful looks at the proofs shows we actually only
need to have Lipschitz gradient and/or strong convexity over the
sublevel set

S = {x : f(x) ≤ f(x(0))}

This is less restrictive
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Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0

• If f is strongly convex with parameter d, then

‖∇f(x)‖2 ≤
√

2dε ⇒ f(x)− f(x?) ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap

• Pro: Very fast for well-conditioned, strongly convex problems

• Con: Often slow, because interesting problems aren’t strongly
convex or well-conditioned

• Con: can’t handle nondifferentiable functions
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Forward stagewise regression

Let’s stick with f(β) = 1
2‖y −Xβ‖

2
2, linear regression setting

X is n× p, its columns X1, . . . Xp are predictor variables

Forward stagewise regression: start with β(0) = 0, repeat:

• Find variable i such that |XT
i r| is largest, where

r = y −Xβ(k−1) (largest absolute correlation with residual)

• Update β
(k)
i = β

(k−1)
i + γ · sign(XT

i r)

Here γ > 0 is small and fixed, called learning rate

This looks kind of like gradient descent
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Steepest descent

Close cousin to gradient descent, just change the choice of norm.
Let p, q be complementary (dual): 1/p+ 1/q = 1

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖q · u
u = argmin

‖v‖p≤1
∇f(x)T v

• If p = 2, then ∆x = −∇f(x), gradient descent

• If p = 1, then ∆x = −∂f(x)/∂xi · ei, where∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ = max
j=1,...n

∣∣∣∣ ∂f∂xj (x)

∣∣∣∣ = ‖∇f(x)‖∞

Normalized steepest descent just takes ∆x = u (unit q-norm)
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Equivalence

Normalized steepest descent with respect to `1 norm: updates are

x+i = xi − t · sign
( ∂f
∂xi

(x)
)

where i is the largest component of ∇f(x) in absolute value

Compare forward stagewise: updates are

β+i = βi + γ · sign(XT
i r), r = y −Xβ

Recall here f(β) = 1
2‖y −Xβ‖

2
2, so ∇f(β) = −XT (y −Xβ) and

∂f(β)/∂βi = −XT
i (y −Xβ)

Forward stagewise regression is exactly normalized steepest descent
under `1 norm (with fixed step size t = γ)
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Early stopping and sparse approximation

If we run forward stagewise to completion, then we know that we
will minimize the least squares criterion f(β) = ‖y −Xβ‖22, i.e.,
we will get a least squares solution

What happens if we stop early?

• May seem strange from an optimization perspective (we
would be “under-optimizing”) ...

• Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

min
x∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ s

How do lasso solutions and forward stagewise estimates compare?
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Left side is lasso solution β̂(s) over bound s, right side is forward
stagewise estimate over iterations k:

(From ESL page 609)

For some problems, they are exactly the same (as γ → 0)
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Gradient boosting

Given observations y = (y1, . . . yn) ∈ Rn, predictor measurements
xi ∈ Rp, i = 1, . . . n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

ŷi =

m∑
j=1

βj · Tj(xi), i = 1, . . . n

Each tree Tj inputs predictor measurements xi, outputs prediction.
Trees are grown typically pretty short

...
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Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(yi, ŷi) = (yi − ŷi)2

Want to solve

min
β∈RM

n∑
i=1

L
(
yi,

M∑
j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that’s
forced to work with trees

First think of minimization as minŷ f(ŷ), function of predictions ŷ
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Start with initial model, e.g., fit a single tree ŷ(0) = T0. Repeat:

• Evaluate gradient g at latest prediction ŷ(k−1),

gi =

[
∂L(yi, ŷi)

∂ŷi

] ∣∣∣∣
ŷi=ŷ

(k−1)
i

, i = 1, . . . n

• Find a tree Tk that is close to −g, i.e., Tk solves

min
trees T

n∑
i=1

(−gi − T (xi))
2

Not hard to (approximately) solve for a single tree

• Update our prediction:

ŷ(k) = ŷ(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired
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Can we do better?

Recall O(1/k) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f(x?) ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can we achieve a rate O(1/k2)? Answer: yes, and more!
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