
Gradient descent

Barnabas Poczos & Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Gradient descent

First consider unconstrained minimization of f : Rn → R, convex
and differentiable. We want to solve

min
x∈Rn

f(x),

i.e., find x? such that f(x?) = minx f(x)

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point

2

●

●

●

●

●

3

●

●

●

●

●

4

Interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖

2
2 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)

5

●

●

Blue point is x, red point is
x+ = argminy∈Rn f(x) +∇f(x)T (y − x) + ‖y − x‖22/(2t)

6

Outline

Today:

• How to choose step size tk

• Convergence under Lipschitz gradient

• Convergence under strong convexity

• Forward stagewise regression, boosting

7

Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

*

8

Can be slow if t is too small. Same example, gradient descent after
100 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●●

*

9

Same example, gradient descent after 40 appropriately sized steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●*

This porridge is too hot! – too cold! – juuussst right. Convergence
analysis later will give us a better idea

10

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• Then at each iteration, start with t = 1, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22,

update t = βt

Simple and tends to work pretty well in practice

11

Interpretation

(From B & V page 465)

For us ∆x = −∇f(x)

12

Backtracking picks up roughly the right step size (13 steps):

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●

●
●

●
●

●●

●●●*

Here β = 0.8 (B & V recommend β ∈ (0.1, 0.8))

13

Exact line search

Could also choose step to do the best we can along the direction
of the negative gradient, called exact line search:

t = argmin
s≥0

f(x− s∇f(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it’s usually not worth it

14

Convergence analysis

Assume that f : Rn → R is convex and differentiable, and
additionally

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

I.e., ∇f is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖22

2tk

I.e., gradient descent has convergence rate O(1/k)

I.e., to get f(x(k))− f(x?) ≤ ε, need O(1/ε) iterations

15

Proof

Key steps:

• ∇f Lipschitz with constant L ⇒

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

• Plugging in y = x+ = x− t∇f(x),

f(x+) ≤ f(x)− (1− Lt

2
)t‖∇f(x)‖22

• Taking 0 < t ≤ 1/L, and using convexity of f ,

f(x+) ≤ f(x?) +∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

= f(x?) +
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)
16

• Summing over iterations:

k∑
i=1

(f(x(i))− f(x?)) ≤ 1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)
≤ 1

2t
‖x(0) − x?‖22

• Since f(x(k)) is nonincreasing,

f(x(k))− f(x?) ≤ 1

k

k∑
i=1

(
f(x(i))− f(x?)

)
≤ ‖x

(0) − x?‖22
2tk

17

Convergence analysis for backtracking

Same assumptions, f : Rn → R is convex and differentiable, and
∇f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-
fies

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed
step size (β/L vs 1/L)

18

Strong convexity

Strong convexity of f means for some d > 0,

∇2f(x) � dI for any x

Sharper lower bound than that from usual convexity:

f(y) ≥ f(x) +∇f(x)T (y − x) +
d

2
‖y − x‖22 all x, y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(d + L)
or with backtracking line search search satisfies

f(x(k))− f(x?) ≤ ckL
2
‖x(0) − x?‖22

where 0 < c < 1

19

I.e., rate with strong convexity is O(ck), exponentially fast!

I.e., to get f(x(k))− f(x?) ≤ ε, need O(log(1/ε)) iterations

Called linear convergence, because looks linear on a semi-log plot:

(From B & V page 487)

Constant c depends adversely on condition number L/d (higher
condition number ⇒ slower rate)

20

A look at the conditions

Lipschitz continuity of ∇f :

• This means ∇2f(x) � LI
• E.g., consider f(β) = 1

2‖y −Xβ‖
2
2 (linear regression). Here

∇2f(β) = XTX, so ∇f is Lipschitz with L = σ2max(X)

Strong convexity of f :

• Recall this is ∇2f(x) � dI
• E.g., consider f(β) = 1

2‖y −Xβ‖
2
2, with ∇2f(β) = XTX.

Now we need d = σ2min(X)

• If X is wide—i.e., X is n× p with p > n—then σmin(X) = 0,
and f can’t be strongly convex

• Even if σmin(X) > 0, can have a very large condition number
L/d = σmax(X)/σmin(X)

21

A function f having Lipschitz gradient and being strongly convex
can be summarized as:

dI � ∇2f(x) � LI for all x ∈ Rn,

for constants L > d > 0

Think of f being sandwiched between two quadratics

This may seem like a strong condition to hold globally, over all
x ∈ Rn. But a careful looks at the proofs shows we actually only
need to have Lipschitz gradient and/or strong convexity over the
sublevel set

S = {x : f(x) ≤ f(x(0))}

This is less restrictive

22

Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0

• If f is strongly convex with parameter d, then

‖∇f(x)‖2 ≤
√

2dε ⇒ f(x)− f(x?) ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap

• Pro: Very fast for well-conditioned, strongly convex problems

• Con: Often slow, because interesting problems aren’t strongly
convex or well-conditioned

• Con: can’t handle nondifferentiable functions

23

Forward stagewise regression

Let’s stick with f(β) = 1
2‖y −Xβ‖

2
2, linear regression setting

X is n× p, its columns X1, . . . Xp are predictor variables

Forward stagewise regression: start with β(0) = 0, repeat:

• Find variable i such that |XT
i r| is largest, where

r = y −Xβ(k−1) (largest absolute correlation with residual)

• Update β
(k)
i = β

(k−1)
i + γ · sign(XT

i r)

Here γ > 0 is small and fixed, called learning rate

This looks kind of like gradient descent

24

Steepest descent

Close cousin to gradient descent, just change the choice of norm.
Let p, q be complementary (dual): 1/p+ 1/q = 1

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖q · u
u = argmin

‖v‖p≤1
∇f(x)T v

• If p = 2, then ∆x = −∇f(x), gradient descent

• If p = 1, then ∆x = −∂f(x)/∂xi · ei, where∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ = max
j=1,...n

∣∣∣∣ ∂f∂xj (x)

∣∣∣∣ = ‖∇f(x)‖∞

Normalized steepest descent just takes ∆x = u (unit q-norm)

25

Equivalence

Normalized steepest descent with respect to `1 norm: updates are

x+i = xi − t · sign
(∂f
∂xi

(x)
)

where i is the largest component of ∇f(x) in absolute value

Compare forward stagewise: updates are

β+i = βi + γ · sign(XT
i r), r = y −Xβ

Recall here f(β) = 1
2‖y −Xβ‖

2
2, so ∇f(β) = −XT (y −Xβ) and

∂f(β)/∂βi = −XT
i (y −Xβ)

Forward stagewise regression is exactly normalized steepest descent
under `1 norm (with fixed step size t = γ)

26

Early stopping and sparse approximation

If we run forward stagewise to completion, then we know that we
will minimize the least squares criterion f(β) = ‖y −Xβ‖22, i.e.,
we will get a least squares solution

What happens if we stop early?

• May seem strange from an optimization perspective (we
would be “under-optimizing”) ...

• Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

min
x∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ s

How do lasso solutions and forward stagewise estimates compare?

27

Left side is lasso solution β̂(s) over bound s, right side is forward
stagewise estimate over iterations k:

(From ESL page 609)

For some problems, they are exactly the same (as γ → 0)

28

Gradient boosting

Given observations y = (y1, . . . yn) ∈ Rn, predictor measurements
xi ∈ Rp, i = 1, . . . n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

ŷi =

m∑
j=1

βj · Tj(xi), i = 1, . . . n

Each tree Tj inputs predictor measurements xi, outputs prediction.
Trees are grown typically pretty short

...

29

Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(yi, ŷi) = (yi − ŷi)2

Want to solve

min
β∈RM

n∑
i=1

L
(
yi,

M∑
j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that’s
forced to work with trees

First think of minimization as minŷ f(ŷ), function of predictions ŷ

30

Start with initial model, e.g., fit a single tree ŷ(0) = T0. Repeat:

• Evaluate gradient g at latest prediction ŷ(k−1),

gi =

[
∂L(yi, ŷi)

∂ŷi

] ∣∣∣∣
ŷi=ŷ

(k−1)
i

, i = 1, . . . n

• Find a tree Tk that is close to −g, i.e., Tk solves

min
trees T

n∑
i=1

(−gi − T (xi))
2

Not hard to (approximately) solve for a single tree

• Update our prediction:

ŷ(k) = ŷ(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired

31

Can we do better?

Recall O(1/k) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f(x?) ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can we achieve a rate O(1/k2)? Answer: yes, and more!

32

References

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 9

• T. Hastie, R. Tibshirani and J. Friedman (2009), “The
elements of statistical learning”, Chapters 10 and 16

• Y. Nesterov (2004), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

33

