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Recall gradient descent

We want to solve

min f(z),

for f convex and differentiable

Gradient descent: choose initial z(?) € R™, repeat

2B — (k=1) _ t - Vf(x(kfl)% k=1,2,3,...

If Vf Lipschitz, gradient descent has convergence rate O(1/k)

Downsides:
e Requires f differentiable < next lecture

e Can be slow to converge < two lectures from now



Outline

Today:
e Subgradients
e Examples
e Subgradient rules

e Optimality characterizations



Subgradients

Remember that for convex f : R" — R,
fly) > f(z)+ V(@) (y—=) all 2,y
l.e., linear approximation always underestimates f
A subgradient of convex f: R™ — R at = is any g € R™ such that

f) > fl)+g"(y—2), ally

o Always exists
e If f differentiable at z, then g = V f(x) uniquely

e Actually, same definition works for nonconvex f (however,
subgradients need not exist)



Examples

Consider f: R — R, f(x) = ||

15 2.0
1

f(x)
10

0.5

0.0
1

-0.5
1

e For z # 0, unique subgradient g = sign(x)
e For x = 0, subgradient g is any element of [—1, 1]
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Consider f: R" — R, f(x)
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e For x # 0, unique subgradient g = z/||x||2
e For x = 0, subgradient g is any element of {z
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e For x; = 0, ith component g; is an element of [—1, 1]

sign

i ith component g;
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e Forax; #0



Let f1, f2 : R™ — R be convex, differentiable, and consider

f(z) = max{fi(z), fa(z)}

e For fi(z) > fa(x), unique subgradient g = V f1(x)
e For fo(z) > fi(z), unique subgradient g = V fa(z)
e For fi(z) = fa(z), subgradient g is any point on the line

segment between V fi(x) and V fa(z)



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at =}

Of(x) is closed and convex (even for nonconvex f)

Nonempty (can be empty for nonconvex f)
If f is differentiable at x, then 0f(z) = {V f(z)}
If 0f(z) = {g}, then f is differentiable at = and Vf(z) =g



Connection to convex geometry

Convex set C' C R"™, consider indicator function I : R™ — R,

0 ifzeC

Ic(x):I{xEC}:{OO frdC

For z € C, dIc(x) = Ne(x), the normal cone of C at z,

Ne(z) ={geR": g7z > gTy for any y € C}

Why? Recall definition of subgradient g,

Io(y) > Io(z) +¢" (y— ) forall y

e Fory¢ C, Ic(y) = o0
e For 3y € C, this means 0 > ¢ (y — )
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Subgradient calculus

Basic rules for convex functions:
e Scaling: d(af) =a-df provided a > 0
e Addition: 9(f1 + f2) = 0f1 + 0fa
e Affine composition: if g(z) = f(Ax + b), then

dg(x) = ATOf(Axz +b)
e Finite pointwise maximum: if f(z) = max;—1,__m fi(z), then
of@)=comv(  |J  9fiw)),
i:fi(z)=f(z)

the convex hull of union of subdifferentials of all active
functions at =
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e General pointwise maximum: if f(z) = maxgcs fs(x), then
df(z) 2 cl{conv( U 8fs(a:))}
sifs(x)=f(z)

and under some regularity conditions (on S, f5), we get =

e Norms: important special case, f(x) = ||z|[,. Let ¢ be such
that 1/p+1/q =1, then

T
X = Imax 2 X
Il I2llq<1

Hence

of(z) = {y ylly <1 and y'z = max ZT.’E}
2llq<1
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Why subgradients?

Subgradients are important for two reasons:

e Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

e Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For any f (convex or not),

f(z*) = min f(z) <= 0€If(z")
zeR™

l.e., * is a minimizer if and only if 0 is a subgradient of f at z*

Why? Easy: g = 0 being a subgradient means that for all y
fy) = fl@) + 0" (y — a*) = f(a™)

Note implication for differentiable case, where df(z) = {V f(z)}
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Projection onto a convex set

Given closed, convex set C' C R™, and a point y € R", we define
the projection operator onto C' as

Po(x) = argmin ||y — x||2
zeC

Optimality characterization: x* = Po(y)
if and only if

(y—a*,2*—x) >0 forall z€C

Sometimes called variational inequality
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How to see this? Note that 2* = P (y) minimizes the criterion

F(a) = glly —all3 + Ie(a)

where I is the indicator function of C'. Hence we know this is
equivalent to

0€df(z")=—(y—2") + No(x)

ie.,
y—a* € No(x)

which exactly means

(y — 2 la* > (y— 2Tz forallzeC
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Soft-thresholding

Lasso problem can be parametrized as

— X A
élé]%}o H?J BlI5 + MBIl

where A > 0. Consider simplified problem with X = I:

- A
nin 5 Hy B3+ AlBlh

Claim: solution of simple problem is 3 = Sx(y), where S} is the
soft-thresholding operator,

yi— A ity > A
[Sx(y)]i = {0 if =A<y <A
yi+ A if gy < —A
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Why? Subgradients of f(8) = %Hy — B3 + |81 are
g = 5 - Y + >\87
where s; = sign(3;) if 5; #0 and s; € [-1,1] if 5; =0

Now just plug in 8 = S)(y) and check that we can get g =0

Soft-thresholding in 3
one variable:

-0.5
1

-1.0
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