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Recall gradient descent

We want to solve
min
x∈Rn

f(x),

for f convex and differentiable

Gradient descent: choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

If ∇f Lipschitz, gradient descent has convergence rate O(1/k)

Downsides:

• Requires f differentiable ← next lecture

• Can be slow to converge ← two lectures from now
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Outline

Today:

• Subgradients

• Examples

• Subgradient rules

• Optimality characterizations
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Subgradients

Remember that for convex f : Rn → R,

f(y) ≥ f(x) +∇f(x)T (y − x) all x, y

I.e., linear approximation always underestimates f

A subgradient of convex f : Rn → R at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x), all y

• Always exists

• If f differentiable at x, then g = ∇f(x) uniquely

• Actually, same definition works for nonconvex f (however,
subgradients need not exist)
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Examples

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖2
• For x = 0, subgradient g is any element of {z : ‖z‖2 ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is an element of [−1, 1]
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Let f1, f2 : Rn → R be convex, differentiable, and consider
f(x) = max{f1(x), f2(x)}
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• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on the line

segment between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• ∂f(x) is closed and convex (even for nonconvex f)

• Nonempty (can be empty for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x,

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? Recall definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv
( ⋃
i:fi(x)=f(x)

∂fi(x)
)
,

the convex hull of union of subdifferentials of all active
functions at x
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• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl
{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)
)}

and under some regularity conditions (on S, fs), we get =

• Norms: important special case, f(x) = ‖x‖p. Let q be such
that 1/p+ 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zTx

Hence

∂f(x) =
{
y : ‖y‖q ≤ 1 and yTx = max

‖z‖q≤1
zTx

}
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Why subgradients?

Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For any f (convex or not),

f(x?) = min
x∈Rn

f(x) ⇐⇒ 0 ∈ ∂f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note implication for differentiable case, where ∂f(x) = {∇f(x)}
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Projection onto a convex set

Given closed, convex set C ⊆ Rn, and a point y ∈ Rn, we define
the projection operator onto C as

PC(x) = argmin
x∈C

‖y − x‖2

●

*

●

Optimality characterization: x? = PC(y)
if and only if

〈y − x?, x? − x〉 ≥ 0 for all x ∈ C

Sometimes called variational inequality
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How to see this? Note that x? = PC(y) minimizes the criterion

f(x) =
1

2
‖y − x‖22 + IC(x)

where IC is the indicator function of C. Hence we know this is
equivalent to

0 ∈ ∂f(x?) = −(y − x?) +NC(x?)

i.e.,
y − x? ∈ NC(x?)

which exactly means

(y − x?)Tx? ≥ (y − x?)Tx for all x ∈ C
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Soft-thresholding

Lasso problem can be parametrized as

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ ≥ 0. Consider simplified problem with X = I:

min
β∈Rn

1

2
‖y − β‖22 + λ‖β‖1

Claim: solution of simple problem is β̂ = Sλ(y), where Sλ is the
soft-thresholding operator,

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ
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Why? Subgradients of f(β) = 1
2‖y − β‖

2
2 + λ‖β‖1 are

g = β − y + λs,

where si = sign(βi) if βi 6= 0 and si ∈ [−1, 1] if βi = 0

Now just plug in β = Sλ(y) and check that we can get g = 0

Soft-thresholding in
one variable:
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