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Recall gradient descent

We want to solve
min
x∈Rn

f(x),

for f convex and differentiable

Gradient descent: choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

If ∇f Lipschitz, gradient descent has convergence rate O(1/k)

Downsides:

• Requires f differentiable ← this lecture

• Can be slow to converge ← next lecture
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Subgradient method

Given convex f : Rn → R, not necessarily differentiable

Subgradient method: just like gradient descent, but replacing
gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . . ,

where g(k−1) is any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(0), . . . x(k) so far, i.e.,

f(x
(k)
best) = min

i=0,...k
f(x(i))
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Step size choices

• Fixed step size: tk = t all k = 1, 2, 3, . . .

• Diminishing step size: choose tk to satisfy

∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞,

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
all step sizes options are pre-specified, not adaptively computed
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Convergence analysis

Assume that f : Rn → R is convex, and also that f is Lipschitz
continuous with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G‖x− y‖2 for all x, y

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f(x

?) +G2t/2

Theorem: For diminishing step sizes, subgradient method sat-
isfies

lim
k→∞

f(x
(k)
best) = f(x?)
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Basic inequality

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient,

‖x(k) − x?‖22 ≤
‖x(k−1) − x?‖22 − 2tk

(
f(x(k−1))− f(x?)

)
+ t2k‖g(k−1)‖22

• Iterating last inequality,

‖x(k) − x?‖22 ≤

‖x(0) − x?‖22 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+

k∑
i=1

t2i ‖g(i−1)‖22
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• Using ‖x(k) − x?‖2 ≥ 0, and letting R = ‖x(0) − x?‖2,

0 ≤ R2 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+G2

k∑
i=1

t2i

• Introducing f(x
(k)
best) = mini=0,...k f(x

(i)), and rearranging,

f(x
(k)
best)− f(x

?) ≤
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti

We call this our basic inequality

For different step sizes choices, convergence results can be directly
obtained from this basic inequality. E.g., theorems for fixed and
diminishing step sizes follow
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Polyak step sizes

Polyak step sizes: when the optimal value f(x?) is known, take

tk =
f(x(k−1))− f(x?)
‖g(k−1)‖22

, k = 1, 2, 3, . . .

Can be motivated from first step in subgradient proof:

‖x(k)−x?‖22 ≤ ‖x(k−1)−x?‖22−2tk
(
f(x(k−1))−f(x?)

)
+t2k‖g(k−1)‖22

Polyak step size minimizes the right-hand side

With this choice of step size, error complexity after k iterations is

f(x
(k)
best)− f(x

?) = O(1/
√
k)

I.e., to get f(x
(k)
best)− f(x

?) ≤ ε, need O(1/ε2) iterations
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Intersection of sets

Example (from Boyd’s lecture notes): suppose we want to find
x? ∈ C1 ∩ . . . ∩ Cm, i.e., find point in intersection of closed,
convex sets C1, . . . Cm

First define
f(x) = max

i=1,...m
dist(x,Ci),

and now solve
min
x∈Rn

f(x)

Note that f(x?) = 0 ⇒ x? ∈ C1 ∩ . . . ∩ Cm

Recall distance to set C,

dist(x,C) = min{‖x− u‖2 : u ∈ C}
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For closed, convex C, there is a unique point minimizing ‖x− u‖2
over u ∈ C. Denoted u? = PC(x), so dist(x,C) = ‖x− PC(x)‖2

Recall optimality characterization:
u? = PC(x) if and only if

〈x−u?, u?−u〉 ≥ 0 for all u ∈ C

●

*

●

Consider h(x) = dist(x,C). For x /∈ C,

∇h(x) = x− PC(x)
‖x− PC(x)‖2

Follows from definition of subgradients, and above characterization
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Now write fi(x) = dist(x,Ci) for i = 1, . . .m, and

f(x) = max
i=1,...m

fi(x)

We know how to compute subgradient g ∈ ∂f(x): first find set Ci
with fi(x) = f(x), then let

g = ∇fi(x) = (x− PCi(x))/‖x− PCi(x)‖2

Can apply subgradient method, with Polyak step tk = f(x(k−1))

At iteration k, we find Ci so that x(k−1) is farthest from Ci. Then
update

x(k) = x(k−1) − f(x(k−1)) x(k−1) − PCi(x
(k−1))

‖x(k−1) − PCi(x
(k−1))‖2

= PCi(x
(k−1))
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For two sets, this is exactly the famous alternating projections
algorithm, i.e., just keep projecting back and forth

(From Boyd’s notes)
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Projected subgradient method

To minimize a convex function f over a convex set C,

min
x∈C

f(x)

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C at each iteration:

x(k) = PC
(
x(k−1) − tkg(k−1)

)
, k = 1, 2, 3, . . .

Assuming we can do this projection, get the same convergence
guarantees as the usual subgradient method, with the same step
size choices
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What sets C are easy to project onto? Lots, e.g.,

• Affine images C = {Ax+ b : x ∈ Rn}
• Solution set of linear system C = {x ∈ Rn : Ax = b}
• Nonnegative orthant C = {x ∈ Rn : x ≥ 0} = Rn+
• Norm balls C = {x ∈ Rn : ‖x‖p ≤ 1}, for p = 1, 2,∞
• Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and PC
can turn out to be very hard!

E.g., it is generally hard to project onto solution set of arbitrary
linear inequalities, i.e, arbitrary polyhedron C = {x ∈ Rn : Ax ≤ b}
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Basis pursuit

Recall the basis pursuit problem

min
β∈Rp

‖β‖1 subject to Xβ = y

Here C = {β : Xβ = y} and PC(β) = β +XT (XXT )−1(y −Xβ)
(assuming that rank(X) = n)

Hence, projected subgradient method repeats

β(k) = PC
(
β(k−1) − tks(k−1)

)
= β(k−1) − tk

(
I −XT (XXT )−1X

)
s(k−1)

where s(k−1) ∈ ∂‖β(k−1)‖1, i.e.,

s
(k−1)
i ∈

{
{sign(β(k−1))} β

(k−1)
i 6= 0

[−1, 1] otherwise
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Can we do better?

Strength of subgradient method: broad applicability. Downside:
O(1/

√
k) convergence rate over problem class of convex, Lipschitz

functions is really slow

Nonsmooth first-order methods: iterative methods that start with
x(0) and update x(k) in

x(0) + span{g(0), g(1), . . . g(k−1)}

where subgradients g(0), g(1), . . . g(k−1) come from weak oracle

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f(x?) ≥ RG

2(1 +
√
k + 1)
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Improving on the subgradient method

So we cannot generically do better than the subgradient method,
unless we go beyond nonsmooth first-order methods

Instead of trying to better across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions h), we can recover O(1/k)
rate of gradient descent with a natural algorithm, having big
practical consequences

17



References

• S. Boyd, Lecture Notes for EE 264B, Stanford University,
Spring 2010-2011

• Y. Nesterov (2004), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

• B. Polyak (1987), “Introduction to optimization”, Chapter 5

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

18


