
Acceleration

Barnabas Poczos & Ryan Tibshirani
Convex Optimization 10-725/36-725

1



Recall generalized gradient descent

We want to solve
min
x∈Rn

g(x) + h(x),

for g convex and differentiable, h convex

Generalized gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = proxtk
(
x(k−1) − tk · ∇g(x(k−1))

)
, k = 1, 2, 3, . . .

where the prox function is defined as

proxt(x) = argmin
z∈Rn

1

2t
‖x− z‖2 + h(z)

If ∇g is Lipschitz continuous, and prox function can be evaluated,
then generalized gradient has rate O(1/k) (counts # of iterations)

We can apply acceleration to achieve optimal O(1/k2) rate!

2



Acceleration

Turns out we can accelerate generalized gradient descent in order
to achieve the optimal O(1/k2) convergence rate

Four ideas (three acceleration methods) by Nesterov:

• 1983: original accleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

• 2007: acceleration idea for composite functions1

Beck and Teboulle (2008): extension of Nesterov (1983) to
composite functions2

Tseng (2008): unified analysis of accleration techniques (all of
these, and more)

1Each step uses entire history of previous steps and makes two prox calls
2Each step uses information from two last steps and makes one prox call

3



Outline

Rest of today:

• Acceleration for composite functions (method of Beck and
Teboulle (2008), presentation of Vandenberghe’s notes)

• Convergence rate

• FISTA

• Is acceleration always useful?

4



Accelerated generalized gradient method

Our problem
min
x∈Rn

g(x) + h(x),

for g convex and differentiable, h convex

Accelerated generalized gradient method: choose an initial point
x(0) = x(−1) ∈ Rn, repeat for k = 1, 2, 3, . . .

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(
y − tk∇g(y)

)
• First step k = 1 is just usual generalized gradient update

• After that, y = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations

• h = 0 gives accelerated gradient method

5



●

●

●

●

●

●

●
●
●
●
●●

●●
●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0

k

(k
 −

 2
)/

(k
 +

 1
)

6



Consider minimizing

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β)

)
i.e., logistic regression with predictors xi ∈ Rp

This is smooth, and

∇f(β) = −XT (y − p(β)), where

pi(β) = exp(xTi β)/(1 + exp(xTi β)) for i = 1, . . . n

No nonsmooth part here, so proxt(β) = β

7



Example (with n = 30, p = 10):

0 20 40 60 80 100

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

k

f(
k)

−
fs

ta
r

Gradient descent
Accelerated gradient

8



Another example (n = 30, p = 10):

0 20 40 60 80 100

1e
−

05
1e

−
03

1e
−

01

k

f(
k)

−
fs

ta
r

Gradient descent
Accelerated gradient

Not a descent method!

9



Reformulation

Initialize x(0) = u(0), and repeat for k = 1, 2, 3, . . .

y = (1− θk)x(k−1) + θku
(k−1)

x(k) = proxtk(y − tk∇g(y))

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

with θk = 2/(k + 1)

This is equivalent to the formulation of accelerated generalized
gradient method presented earlier (slide 5). Makes convergence
analysis easier

(Note: Beck and Teboulle (2008) use a choice θk < 2/(k + 1), but
very close)

10



Convergence analysis

As usual, we are minimizing f(x) = g(x) + h(x) assuming

• g is convex, differentiable, ∇g is Lipschitz continuous with
constant L > 0

• h is convex, prox function can be evaluated

Theorem: Accelerated generalized gradient method with fixed
step size t ≤ 1/L satisfies

f(x(k))− f(x?) ≤ 2‖x(0) − x?‖22
t(k + 1)2

Achieves the optimal O(1/k2) rate for first-order methods!

I.e., to get f(x(k))− f(x?) ≤ ε, need O(1/
√
ε) iterations

11



Helpful inequalities

We will use
1− θk
θ2
k

≤ 1

θ2
k−1

, k = 1, 2, 3, . . .

We will also use

h(v) ≤ h(z) +
1

t
(v − w)T (z − v), all z, w, v = proxt(w)

Why is this true? By definition of prox operator,

v minimizes
1

2t
‖w − v‖22 + h(v) ⇐⇒ 0 ∈ 1

t
(v − w) + ∂h(v)

⇐⇒ − 1

t
(v − w) ∈ ∂h(v)

Now apply definition of subgradient

12



Convergence proof

Key steps:

• g Lipschitz with constant L > 0 and t ≤ 1/L ⇒

g(x+) ≤ g(y) +∇g(y)T (x+ − y) +
1

2t
‖x+ − y‖22

• From our bound using prox operator,

h(x+) ≤ h(z) +
1

t
(x+− y)T (z−x+) +∇g(y)T (z−x+) all z

• Adding these together and using convexity of g,

f(x+) ≤ f(z) +
1

t
(x+ − y)T (z − x+) +

1

2t
‖x+ − y‖22 all z

13



• Using this bound at z = x and z = x∗:

f(x+)− f(x?)− (1− θ)(f(x)− f(x?))

≤ 1

t
(x+ − y)T (θx? + (1− θ)x− x+) +

1

2t
‖x+ − y‖22

=
θ2

2t

(
‖u− x?‖22 − ‖u+ − x?‖22

)
• I.e., at iteration k,

t

θ2
k

(f(x(k))− f(x?)) +
1

2
‖u(k) − x?‖22

≤ (1− θk)t
θ2
k

(f(x(k−1))− f(x?)) +
1

2
‖u(k−1) − x?‖22

14



• Using (1− θi)/θ2
i ≤ 1/θ2

i−1, and iterating this inequality,

t

θ2
k

(f(x(k))− f(x?)) +
1

2
‖u(k) − x?‖22

≤ (1− θ1)t

θ2
1

(f(x(0))− f(x?)) +
1

2
‖u(0) − x?‖22

=
1

2
‖x(0) − x?‖22

• Therefore

f(x(k))− f(x?) ≤
θ2
k

2t
‖x(0) − x?‖22 =

2

t(k + 1)2
‖x(0) − x?‖22

15



Backtracking line search

A few ways to do this with acceleration ... here’s a simple method
(more complicated strategies exist)

First think: what do we need t to satisfy? Looking back at proof
with tk = t ≤ 1/L,

• We used

g(x+) ≤ g(y) +∇g(y)T (x+ − y) +
1

2t
‖x+ − y‖22

• We also used
(1− θk)tk

θ2
k

≤ tk−1

θ2
k−1

,

so it suffices to have tk ≤ tk−1, i.e., decreasing step sizes

16



Backtracking algorithm: fix β < 1, t0 = 1. At iteration k, replace
x update (i.e., computation of x+) with:

• Start with tk = tk−1 and x+ = proxtk(y − tk∇g(y))

• While g(x+) > g(y) +∇g(y)T (x+ − y) + 1
2tk
‖x+ − y‖22,

repeat:

I tk = βtk and x+ = proxtk(y − tk∇g(y))

Note this achieves both requirements. So under same conditions
(∇g Lipschitz, prox function evaluable), we get same rate

Theorem: Accelerated generalized gradient method with back-
tracking line search satisfies

f(x(k))− f(x?) ≤ 2‖x(0) − x?‖22
tmin(k + 1)2

where tmin = min{1, β/L}

17



FISTA

Recall lasso problem,

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

and ISTA (Iterative Soft-thresholding Algorithm):

β(k) = Sλtk(β(k−1) + tkX
T (y −Xβ(k−1))

)
, k = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):3

v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

β(k) = Sλtk
(
v + tkX

T (y −Xv)
)
, k = 1, 2, 3, . . .

3Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing

18



Lasso regression: 100 instances (with n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

19



Lasso logistic regression: 100 instances (n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

20



Is acceleration always useful?

Acceleration is generally a very effective speedup tool ... but
should it always be used?

In practice the speedup of using acceleration is diminished in the
presence of warm starts. I.e., suppose want to solve lasso problem
for tuning parameters values

λ1 > λ2 > . . . > λr

• When solving for λ1, initialize x(0) = 0, record solution x̂(λ1)

• When solving for λj , initialize x(0) = x̂(λj−1), the recorded
solution for λj−1

Over a fine enough grid of λ values, generalized gradient descent
can often perform just as well without acceleration

21



Sometimes backtracking and acceleration can be disadvantageous!

Recall matrix completion problem: observe some only entries of A,
(i, j) ∈ Ω, we want to fill in the rest, so we solve

min
B∈Rm×n

1

2
‖PΩ(A)− PΩ(B)‖2F + λ‖B‖∗

where ‖B‖∗ =
∑r

i=1 σi(B), nuclear norm, and

[PΩ(B)]ij =

{
Bij (i, j) ∈ Ω

0 (i, j) /∈ Ω

Generalized gradient descent with t = 1 (soft-impute algorithm):
updates are

B+ = Sλ
(
PΩ(A) + P⊥Ω (B)

)
where Sλ is the matrix soft-thresholding operator ... requires SVD

22



Backtracking line search with generalized gradient:

• Each backtracking loop evaluates generalized gradient Gt(x)
at various values of t

• Hence requires multiple evaluations of proxt(x)

• For matrix completion, can’t afford this!

Acceleration with generalized gradient:

• Changes argument we pass to prox function: y − t∇g(y)
instead of x− t∇g(x)

• For matrix completion (and t = 1),

B −∇g(B) = PΩ(A)︸ ︷︷ ︸
sparse

+P⊥Ω (B)︸ ︷︷ ︸
low rank

a

⇒ fast SVD

Y −∇g(Y ) = PΩ(A)︸ ︷︷ ︸
sparse

+ P⊥Ω (Y )︸ ︷︷ ︸
not necessarily

low rank

⇒ slow SVD

23



Soft-impute uses L = 1 and exploits special structure ... so it can
outperform fancier methods. E.g., soft-impute (solid blue line) vs
accelerated generalized gradient (dashed black line):

Small problem Big problem

(From Mazumder et al. (2011), “Spectral regularization algorithms
for learning large incomplete matrices”)

24



References

Nesterov’s four ideas (three acceleration methods):

• Y. Nesterov (1983), “A method for solving a convex
programming problem with convergence rate O(1/k2)”

• Y. Nesterov (1988), “On an approach to the construction of
optimal methods of minimization of smooth convex functions”

• Y. Nesterov (2005), “Smooth minimization of non-smooth
functions”

• Y. Nesterov (2007), “Gradient methods for minimizing
composite objective function”

25



Extensions and/or analyses:

• A. Beck and M. Teboulle (2008), “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems”

• S. Becker and J. Bobin and E. Candes (2009), “NESTA: a
fast and accurate first-order method for sparse recovery”

• P. Tseng (2008), “On accelerated proximal gradient methods
for convex-concave optimization”

and there are many more ...

Helpful lecture notes/books:

• E. Candes, Lecture Notes for Math 301, Stanford University,
Winter 2010-2011

• Y. Nesterov (2004), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

26


