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Administrivia

� Scribing 

� Projects

� HW1 solutions 

� Feedback about lectures / solutions on blackboard
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Books to read

• Boyd and Vandenberghe: Convex Optimization, Chapters 9.5

• Nesterov: Introductory lectures on convex optimization

• Bazaraa, Sherali, Shetty: Nonlinear Programming

• Dimitri P. Bestsekas: Nonlinear Programming

• Wikipedia

• http://www.chiark.greenend.org.uk/~sgtatham/newton/
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Goal of this lecture

Newton method

� Finding a root

� Unconstrained  minimization

� Motivation with quadratic approximation

� Rate of Newton’s method

� Newton fractals

Next lectures:

� Conjugate  gradients

� Quasi Newton Methods
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Newton method for finding a root
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Newton method for finding a root
� Newton method: originally developed for finding a root of a function

� also known as the Newton–Raphson method
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History

This is a special case of Newton’s method

Babylonian method:

S=100. starting values x0 = 50, x0 = 1, 
and x0 = −5. 
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History

� 1669, Isaac Newton [published in 1711]:

finding roots of polynomials

� 1690, Joseph Raphson:

finding roots of polynomials

� 1740, Thomas Simpson: 

solving general nonlinear equation

generalization to systems of two equations 

solving optimization problems (gradient = zero)

� 1879, Arthur Cayley: 

generalizing the Newton's method to finding complex
roots of polynomials
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Newton Method for Finding a Root

Linear Approximation (1st order Taylor approx):

Goal:

Therefore,
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Illustration of Newton’s method

Goal: finding a root

In the next step we will linearize here in x



11

Example: Finding a Root

http://en.wikipedia.org/wiki/Newton%27s_method
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Newton Method for Finding a Root

This can be generalized to multivariate functions

Therefore,

[Pseudo inverse if there is no inverse]
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Newton method for minimization
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Newton method for minimization

Iterate until convergence, or max number of iterations exceeded

(divergence, loops, division by zero might happen…)
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How good is the Newton method?
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Descent direction

Lemma [Descent direction]

Proof:

We know that if a vector has negative inner product with the gradient 
vector, then that direction is a descent direction
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Newton method properties

� Quadratic convergence in the neighborhood of a 
strict local minimum [under some conditions].

� It can break down if f’’(xk) is degenerate.

[no inverse]

� It can diverge.

� It can be trapped in a loop.

� It can converge to a loop…
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Motivation with Quadratic Approximation
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Motivation with Quadratic Approximation

Second order Taylor approximation:

Assume that

Newton step:
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Motivation with Quadratic Approximation
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Convergence rate (f: R→ R case)
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Rates

Example:

Superlinear rate:

Quadratic rate:

Sublinear rate:

Example:

Example:

Example:
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Finding a root: Convergence rate

Goal:

Assumption:

Taylor theorem:

Therefore,
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Finding a root: Convergence rate

We have seen that
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Problematic cases
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Finding a root: chaotic behavior

Let f(x)=x^3-2x^2-11x+12

Goal: find the roots, (-3, 1, 4), using Newton’s method

2.35287527  converges to 4;

2.35284172  converges to −3;

2.35283735  converges to 4;

2.352836327  converges to −3;

2.352836323  converges to 1.
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Finding a root: Cycle

Goal: find its roots

Stating point is important!
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Finding a root: divergence everywhere 
(except in the root)

Newton’s method might never converge (except in the root)! 
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Finding a root: Linear convergence only

If the first derivative is zero at the root, then convergence might be only 
linear (not quadratic)

Linear convergence only!
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Difficulties in minimization

range of quadratic 
convergence
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Generalizations

� Newton method in Banach spaces

• Newton method on the Banach space of 
functions

• We need Frechet derivatives

� Newton method on curved manifolds

• E.g. on space of otrthonormal matrices

� Newton method on complex numbers
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Newton Fractals
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Gradient descent
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Compex functions

f(z)= z4-1, Roots: -1, +1, -i, +i

color the starting point according to which root it ended up
http://www.chiark.greenend.org.uk/~sgtatham/newton/
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Basins of attraction

f(z)= z4-1, Roots: -1, +1, -i, +i

Shading according to how many iterations it needed till convergence

http://www.chiark.greenend.org.uk/~sgtatham/newton/
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Basins of attraction
f’(z)=(z-1)4(z+1)4
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No convergence

polynomial f, having the roots at +i, -i, -2.3 and +2.3

Black circles: no convergence, attracting cycle with period 2
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Avoiding divergence
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Damped Newton method

In order to avoid possible divergence 
do line search with back tracking

We already know that the Newton direction is descent direction
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Classes of differentiable functions
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Classes of Differentiable functions

• Any continuous (but otherwise ugly, 
nondifferentiable) function can be approximated 
arbitrarily well with smooth (k times differentiable) 
function

• Assuming smoothness only is not enough to talk 
about rates…

• We need stronger assumptions on the derivatives. 
[e.g. their magnitudes behaves nicely]
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The CL
k,p(Q) Class

Notation

[Lipschitz continuous pth order derivative]

Definition
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Trivial Lemmas
Lemma [Linear combinations]

Lemma [Class hierarchy]
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Relation between 1st and 2nd derivatives

Lemma

Proof  

Therefore,

Special case, Q.E.D
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CL
2,1(Rn) and the norm of f’’

Lemma [CL
2,1 and the norm of f”]

Proof  

Q.E.D
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CL
2,1(Rn) and the norm of f’’

Proving the other direction  

Q.E.D
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Examples
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Error of 1st orderTaylor approx. in CL
1,1

Lemma [1st orderTaylor approximation in CL
1,1]

Proof  
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Error of 1st orderTaylor approx. in CL
1,1

Q.E.D
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Sandwiching with quadratic functions in CL
1,1

We have proved:

Corollary [Sandwiching CL
1,1 functions with quadratic functions]

Function f can be lower and upper bounded with quadratic functions
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CL
2,2(Rn) Class

Lemma [Properties of CL
2,2 Class]

Proof

[Error of the 1st order approximation of f’]

[Error of the 2nd order approximation of f]

(*1) Definition

(*2) Same as previous lemma [f’ instead of f]

(*3) Similar [Homework]
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Sandwiching f’’(y) in CL
2,2(Rn)

By definition

Corollary [Sandwiching f’’(y) matrix]

Proof

Q.E.D
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Convergence rate of Newton’s method
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Convergence rate of Newton’s method

Assumptions

[Local convergence only]
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Convergence rate of Newton’s method

We already know:

Therefore,

Newton step:

Trivial identity:
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Convergence rate of Newton’s method
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Convergence rate of Newton’s method
We have already proved:

Therefore,

and thus,
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Convergence rate of Newton’s method

We already know:
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Convergence rate of Newton’s method

The error doesn’t increase!

Now, we have that



60

Convergence rate of Newton’s method

We have proved the following theorem

Theorem [Rate of Newton’s method]

Quadratic rate!
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Summary

Newton method

� Finding a root

� Unconstrained  minimization

� Motivation with quadratic approximation

� Rate of Newton’s method

� Newton fractals

Classes of differentiable functions


