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Books to read

 Boyd and Vandenberghe: Convex Optimization, Chapters 9.5
* Nesterov: Introductory lectures on convex optimization

- Bazaraa, Sherali, Shetty: Nonlinear Programming

- Dimitri P. Bestsekas: Nonlinear Programming

« Wikipedia

« http://www.chiark.greenend.org.uk/~sgtatham/newton/



Goal of this lecture

Newton method

d Finding a root

O Unconstrained minimization
= Motivation with quadratic approximation
= Rate of Newton’s method

L Newton fractals

Next lectures:

O Conjugate gradients

O Quasi Newton Methods



Newton method for finding a root




Newton method for finding a root

A Newton method: originally developed for finding a root of a function

A also known as the Newton—Raphson method

. R — R ®
p(z*) =0

r* =7



Finding /S is the same as solving the equation:

fzx) =22-S=0 O

Babylonian method:

1 S x 2 — S
$n+1:—($n+_>:$n f( n):mn_ n ‘

2 () 2
This is a special case of Newton’s method
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d 1690, Joseph Raphson:
finding roots of polynomials

d 1669, Isaac Newton:
finding roots of polynomials

d 1740, Thomas Simpson:
solving general nonlinear equation
generalization to systems of two equations
solving optimization problems (gradient = zero)

d 1879, Arthur Cayley:

generalizing the Newton's method to finding complex
roots of polynomials



Newton Method for Finding a Root

Goal: gb TR—R
¢(z*) =0
e
Linear Approximation (15t order Taylor approx): '
¢(§;|:£,33) = ¢(2) + ¢/(z) Az + o(|Az])
A/CGL/GA@(,g
q)(x"\ =0
Therefore, 0 ~ Qb(i]ﬂ') QS’(SC)AZZ? ‘
¥ —x = Az = (f,((?)




Illustration of Newton’s method
Goal: finding a root f(:r:) = f(zg) + f’(iBO)(ﬂf — x0)

r =z + AxpNT f

AX"T \ ’J’f

In the next step we will linearize here in x

10



Example: Finding a Root
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http://en.wikipedia.org/wiki/Newton%27s_method
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Newton Method for Finding a Root

This can be generalized to multivariate functions

F:R" — R™
Om = F(z*) = F(z+ Az) = F(z) + VF(zc)ég + o(|Ax|)
“\mxr\ ID\'\ /)\
Therefore, Vecceer

Om = F(z) + VF(z)Axzx
Azx = —[VF(z)] 1F(z)

[Pseudo inverse if there is no inverse]
Axr = Th+1 — Tk, and thus
Tpt1 =z — [VF(xp)]1F (zp)
N n f\"’“ m
1N ™ 1L 2
Newton method: Start from zg and iterate. 0



Newton method for minimization
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Newton method for minimization
f R"™ —= R, f is differentiable.

min

min f(z)

We need to find the roots of Vf(x) = 0p, @
Vf:R" — R"

Newton system: Vf(z) 4+ V2f(z)Az = 0 @

Newton step: Az =azpy1 —z, = —[V2f(2)]71Vf(z) @

Iterate until convergence, or max number of iterations exceeded

(divergence, loops, division by zero might happen...) 14



How good is the Newton method?




Descent direction

Lemma [Descent direction]

If sz > 0, then Newton step is a descent direction.

Proof:

We know that if a vector has negative inner product with the gradient
vector, then that direction is a descent direction

Newton step: Az =z, 1 — x, = —[V2f(2)] "1V f(x)

= Vi) ar=-Vi(@)![V2f(2)]71Vf(z) <0 @

16



Newton method properties

d Quadratic convergence in the neighborhood of a
strict local minimum [under some conditions].

Q It can break down if f”(x,) is degenerate.
[no inverse]

A It can diverge.
A It can be trapped in a loop.

It can converge to a loop...

17



Motivation with Quadratic Approximation

18



Motivation with Quadratic Approximation

f R" - R, f is differentiable.
Second order Taylor approximation:

Let ¢(x) = fay) + VT () (@ — zp) + 5z — 2) TV f (23) (z — z1,) @)
Assume that

V2f(x) = 0 [i.e. ¢ has strict global minimum] ’

Now, if z,4 1 is the global minimum of the quadratic function ¢,
then

On = Vo(zpy1) = V(xp) + V2 (xp) (@pt1 — 1) o

Newton step: | ‘
Ar = xpy1 —xp = —[V2f(2)] 71V f(2)
k+1 k

19



Motivation with Quadratic Approximation

(r + Az, flx+ &Imjl}l /

Quadratic approaximation is good, when z is close to z*

F(2) = f@) + VI f(@)(z — ) + 5(z — )T V2 f(2)(z — z)

20



Convergence rate (f: R— R case)

21



A sequence {s;} exhibits linear convergence if lim;_, ., s; = s, and

, S; — s .
Iim i1 — |=5<1 Example: si=cq", 0<g<1
71— 00 |8?; — S|
sit1 — 3] eqtTE
|s; — 5] cq 4
C

Superlinear rate: § =0 Example: $Si = )

si41 -5 ol 1

55 e+ _ix1 0

Sublinearrate: §=1 Example: S; = ?:% , a >0
‘Si—l—l — 5‘ L ci? L () a
s; —s]  cE+1)e (i—l—l) 1

Quadratic rate:

lim [8i+1 — 5| < oo Example: s;,=¢2 ,0<qg<1
1—00 |5i — 8|2

22



Finding a root: Convergence rate

Goal: Find * s.t. f(2*) =0, where f:R— R

Assumption: f has continuous second derviative in =*
Taylor theorem: For a &, between z, and x*, we have

0= (&™) = f(@n) + VS (an)(@" — 2n) + 592/ () (& — 20)?

Therefore, assuming 3[V f(zn)]}
0 = [Vl f ) + (& = 20) + SV )] 92 (En) (@ — 2n)?

[Vf(xn)]_lf(icn) + (CU* — ﬂ?n) - —%[vf(xn)]_lv2f(§n)(ﬂ3 — iUn)z
\ ‘____/*-«' - — "T
XAt En

C ntl
= enp1 = 5[V (@) TV (En)er
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Finding a root: Convergence rate

We have seen that

1V o

_ 1]V2f(x)]
Assume that M = S|:.U||:>2 0] < 00

=lept1] < Me2

Assume that |eg] = |z — 2| < 1

= Quadratic convergence

24



Problematic cases

25



Finding a root: chaotic behavior

Let f(x)=x"3-2x"2-11x+12

Goal: find the roots, (-3, 1, 4), using Newton’s method

2.35287527 converges to 4;
2.35284172 converges to —3;
2.35283735 converges to 4;
2.352836327 converges to —3;
2.352836323 converges to 1.

26



Finding a root: Cycle

Goal: find its roots
7T T A

f(z)=23—-2z+2

0 J
‘I
-1 — it —
|
2 — ! | \ : —
3 K 1 | AN
3 4

3 2 -1 0 1 2
I‘O:O X\"‘, XL"Q’/ Xb:',:(q'-c.,. =) l-c“fCL(‘:

Stating point is important!

27



Finding a root: divergence everywhere

(except in the root)

Newton’s method might never converge (except in the root)!

flz) = V= im LIV2SGOL e

02 [Vi(@)| a0z
r— T x—0 |
Vf(x) = %x_Q/s
V2f(2) = —ca53
O
néf from -2 to 2)
oIVERGEMCE]

28



Finding a root: Linear convergence only

If the first derivative is zero at the root, then convergence might be only
linear (not quadratic)

. 1|V2f(x)] 1
é ;f’él)__xzx 2 V@) abie TS

V2f(z) =2

x = —f(xn):a: — 22/(2xy) = x1/2
n—+1 n f’(ﬂl‘n) n n/( n) n/

Linear convergence only!
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Difficulties in minimization

* =1 =10.142857143

range of quadratic

convergence

z € (0.0, 0.2857143)

f(z) = Tz — In(x) x
fllw) =73
f@) = %
:]C‘k+1 — Tk + (Tk o 7(,13.%:)2) — QT'k o 7(3,&)2
k|| ¢ ot | ZF "
0 1.0 0 |0.1 0.01
1 || =5.0 0 |0.13 0.0193
2 || —185.0 0 |0.1417 0.03599257
3 || —239,945.0 0 |0.14284777 | 0.062916884
4 || —4.0302 x 10" | 0 | 0.142857142 | 0.098124028
5 || =1.1370 x 10%* | 0 | 0.142857143 | 0.128849782
6 || —9.0486 x 10*® [0 | 0.142857143 | 0.1414837
7 || =5.7314 x 10°® | 0 | 0.142857143 | 0.142843938
8 || —oc 0 |0.142857143 | 0.142857142
9 || —o0 0 |0.142857143 | 0.142857143
10 || —o0 0 |0.142857143 | 0.142857143

30




Generalizations

d Newton method in Banach spaces

e Newton method on the Banach space of
functions

e \We need Frechet derivatives

d Newton method on curved manifolds
e E.g. on space of otrthonormal matrices

d Newton method on complex nhumbers

31



Newton Fractals

32



TTTT

ot

I
T

11T
Yyrpirrgld

Iy

[FFEERRanni

Gradient descent
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Compex functions

f(z)= z*-1, Roots: -1, +1, -i, +i

color the starting oit according to which root it ended u

http://www.chiark.greenend.org.uk/~sgtatham/newton/ 34



Basins of attraction

f(z)= z*-1, Roots: -1, +1, -i, +i

Shading according to how many iterations it needed till convergence

http://www.chiark.greenend.org.uk/~sgtatham/newton/ 35



Basins of attraction

f'(2)=(z-1)4(z+1)*

36



No convergence

polynomial f, having the roots at +i, -i, -2.3 and +2.3

Black circles: no convergence, attracting cycle with period 2 37



Avoiding divergence
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Damped Newton method

In order to avoid possible divergence
do line search with back tracking

vy =z — b (@)L ()

7T A G oRrR 3\/@?0
€ - ( JME 56A\ZC/’) 4
W' )AL /fA(: ‘ TON /’Ep

We already know that the Newton direction is descent direction

39



Classes of differentiable functions

40



Classes of Differentiable functions

Any continuous (but otherwise ugly,
nondifferentiable) function can be approximated
arbitrarily well with smooth (k times differentiable)
function

Assuming smoothness only is not enough to talk
about rates...

We need stronger assumptions on the derivatives.
[e.g. their magnitudes behaves nicely]

41



The C *P(Q) Class

Definition

CPP(Q)={f: Q=R

f is k-times continuously differentiable on Q C R"

k>p

1FP)(z) — FP ()| < Lilz — yl|, Yo,y € Q

} [Lipschitz continuous pth order derivative]
Notation

CHQ)={f:Q—=R

f is k-times continuously differentiable on @Q C R" }

42



Trivial Lemmas

Lemma [Linear combinations]

—_—

f1 € CIP(Q)

f2 € CPP(Q) L = afi 4B € CPP(Q)
o8 €R
Lz = |a|L1 +|8|Ly |

Lemma [Class hierarchy]

If ¢ > r, then C? p(Q) C CTP(Q)
ec. CM(q ec(Q)

43



Relation between 1st and 29 derivatives

Lemma Let f be twice differentiable on R"

fletaly—a)—f@ = [ fa+rly—o)y—a)dr

Proof Let ¢(7) = f'(x + 7(y — z)). Now we have that
$(0) = f'(x)

¢(a) = f'(z + a(y — z))
¢'(1) = f'"(xz+7(y —2))(y — )

Therefore,
x4+ aly —x)) — f'(x) = ¢(a) — ¢(0)
= /Oa & (1) dr
= [ 1"+ rly—a)y-a)dr
Special case, Q.E.D

1
F) - f(z) = /O fle+rly—a)y—a)dr



C,%1(R") and the norm of f”

Lemma [C, %! and the norm of f”]
Let f be twice differentiable on R"

Then || f"(x)|lop < LYz € R" & f € C2H (R™)

Proof

—

TH@ - F@ = [ Pt - o)y -2 dr

= W@ - @IS [ 1+l — ) - dr

< 15"+ 7~ aDllopdr 1y — 2
1

<= [ Ldr = Lli(y -]

= f e CoH(R™)
Q.E.D 45



C,%!(R") and the norm of f”

1F"(@)]lop < LYz € R™ & f € 7 (R™)
Proving the other direction <=
feci®R =
With s =y — x, we have seen that

f(x+ as) — f'(z) = /Oa (x4 75) drs

> || [ £ @+ rs)drs| = |If'(z + as) = £ @) < Lilas]|
Ve n
1 (87 1 1)) n VS{‘”\
= SN[ et rsyars| < Lllsll 4ec”(R) vaso
a’Jo " s
”-{:"(X\'ﬂ\
£ @)sl
sl

= |/ @lop < L

= L

Q.E.D 46



o $00) = h1da, x> € Co (R

{AxyxD € c,(R)

1
« £(X) = AT {a,*) 3 Wit L=DAl

gy = Nirxz € c,"'(R)

47



Error of 15t orderTaylor approx. in C, /1

Lemma [ 1t orderTaylor approximation in C, 1!]

FECT®M = () - f(2) — (f' @)y — 2)] < Llly — 22
r,y € R"

Proof

1
fw) = f@) + | (f@+rly—a)y—a)dr
= [fW)—f(@)—{f' (=), y—z)| = |/01<f’($+’r(y—w)),y—$> dr—(f'(z),y—)|

1
=| [ (f@+rly—2) - @)y —a)dr]

< [T+ 7y =)~ @)y — ) dr

48



Error of 15t orderTaylor approx. in C, 1/t

= 15@) ~ F@) ~ (F@,y - Dl [ 1@+ 7 - )~ @)y -2l dr

< [F17 G+ 7 =)~ F@ly — =l dr

A F€ ¢ (RY)
L u 7_,( 4’0 /?‘)\\

L L
< L —z||?dr = = ||y — |2
< | Lrlly—ol?dr = 2y — <l

Q.E.D

49



Sandwiching with quadratic functions in C, -

We have proved:

feCpt®™) = |f(y) — f(2) — (f'(x),y — z)| < L|jy — |2
x,y € R"

Corollary [Sandwiching C, 1! functions with quadratic functions]

feCr®RY) = f(xo) + (f'(z0), @ — x0) — Lz — 2o < f(=)
f(@) < f(z0) + (f'(x0), = — x0) + L|jz — 20]|?

Function 7/ can be lower and upper bounded with quadratic functions

50



C,%4(R") Class

Lemma [Properties of C %2 Class]

1F7Cx) = f"Wllop < Llly — =] (+1)
17'(y) — /(@) — (@) — )| < Flly —=)?  (+2)

[Error of the 1st order approximation of f']
1 L
|£ )= F @)= 1" @) (y=2)=S=2)" " @) y=2)|| < Slly—=®  (+3)
[Error of the 2nd order approximation of f]
Proof (*1) Definition

(*2) Same as previous lemma [f’ instead of f]

(*3) Similar [Homework] 51



Sandwiching f”(y) in C,%%(R")

By definition

22, .
fec”(R )}:> 1£Cx) — F"llop < Llly —zl| (1)

r,y € R"

Corollary [Sandwiching f”(y) matrix]

f < OE’Q(Rn) /! 1/ 1
= () Lrln < £"(y) 3 £(2) + L,

|z —y|| =7

Proof /\S’h
feC2®) => [f"(x) = £"(Wllop < Llly — x| = Lr

= M) <LrYi=1,...,n
f"(x) = 1"(y) = G =< LT,
j{f”(y) — ["(2) = -G 3 Lrl, .

Q.E.D



Convergence rate of Newton’s method
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Convergence rate of Newton’s method

Assumptions
f e @)

3 local minimum x* of f with pos def Hessian in x™*:
f"(x*) »= 11, for some [ >0

xo is close enough to z* [Local convergence only]

Newton step: zj11 =z, — [/ (zp)] 71/ (1)

54



Convergence rate of Newton’s method

Newton step:
Tpy1 — F = xp —* — [ (@] ()

We already know:
1
Fla) = fap) = £@) = [ 1@+ 7oy — ) (@, — ) dr

Therefore,

Bg1 — o = agy— 2 — [ ()] j (" 4 (g — 7)) (g, — o) dr
1

Trivial identity: z,, — z* = [f"(z;)] ! /0 ' (x1) (2 — 2°) dT

= 11 — 2 = [f(z)] 7 1G(z), — =¥)

1
where G, = g[f”(ﬂ%) — f"(z* + 7(xp, — x*))] d7

55



Convergence rate of Newton’s method

Gy = gl[f"(mk) a4 (g — )] dr

1
= [|Gillop < g 1f"(zx) — f"(@* + 7(2, — ) ||op d7

VA
O—,
&
8
P
|
S
|
\]
a
=
P
|
]
*
~
o
ﬁ

f e ®

1 1
= [L(1 — 7)||zp — || dr = [ L(1 — T)rpdr < —Lgk
0 0

L
= [|Gillop < =5*
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Convergence rate of Newton’s method

We have already proved:

FECLEY Ly oy

|z =yl =r

Therefore,

f”(mk) t f”(a:*) L erIn

— Lrl, 2 f'(y) 2 f'(x) + Lrl,

Vi -
l/,ff,\ A95U MPTION

and thus,

Ifl—LT’k > 0, then —

" f(z.) is positive definite

] Hlop < =35

57



Convergence rate of Newton’s method

We already know:
rpt1 = |lzpr1 — ¥ = 117 (@p)] Gz — o)

< |[f”($k)]_1||op |Grllop ||(zg — x*)]]

/ ! f

< (= L)t < %L — Tk

Lr?
k
= Tk4+1 S 30=Lr)

58



Convergence rate of Newton’s method

< L'r
e rk_l_l — 2(l L’I"k)

Now, we have that

If l > L’rk L,r,k
21> 3Lry [ =~ Tk+1 S 2(z er) = 21—2@r,

< 30— 2er Tk

The error doesn’t increase!

59



Convergence rate of Newton’s method

We have proved the following theorem
Theorem [Rate of Newton’s method]

Let f satisfy the above asumptions

|z — x| <7 VEk

L||zg—z*|?

—

—> Quadratic rate!

L ES
Tht1 — @ S oL —ay S

<

—

-

p 2
cllzg — 7|

~—

e — 27|
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Newton method

d Finding a root

O Unconstrained minimization
= Motivation with quadratic approximation
= Rate of Newton’s method

O Newton fractals

Classes of differentiable functions
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