Convex Optimization CMU-10725

Newton Method

Barnabás Póczos & Ryan Tibshirani

Administrivia

□ Scribing

☐ Projects

☐ HW1 solutions

☐ Feedback about lectures / solutions on blackboard

Books to read

- Boyd and Vandenberghe: Convex Optimization, Chapters 9.5
- Nesterov: Introductory lectures on convex optimization
- Bazaraa, Sherali, Shetty: Nonlinear Programming
- **Dimitri P. Bestsekas**: Nonlinear Programming
- Wikipedia
- http://www.chiark.greenend.org.uk/~sgtatham/newton/

Goal of this lecture

Newton method

- ☐ Finding a root
- Unconstrained minimization
 - Motivation with quadratic approximation
 - Rate of Newton's method
- Newton fractals

Next lectures:

- ☐ Conjugate gradients
- ☐ Quasi Newton Methods

Newton method for finding a root

Newton method for finding a root

- ☐ Newton method: originally developed for finding a root of a function
- □ also known as the **Newton**—**Raphson method**

$$\phi: \mathbb{R} \to \mathbb{R}$$

$$\phi(x^*) = 0$$

$$x^* = ?$$

History

Finding \sqrt{S} is the same as solving the equation:

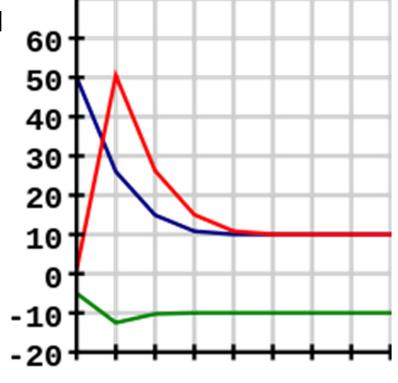
$$f(x) = x^2 - S = 0$$

Babylonian method:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right) = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - S}{2x_n}$$

This is a special case of Newton's method

S=100. starting values $x_0 = 50$, $x_0 = 1$, and $x_0 = -5$.



History

☐ 1690, Joseph Raphson: finding roots of polynomials 1669, Isaac Newton: finding roots of polynomials **□ 1740, Thomas Simpson:** solving general nonlinear equation generalization to systems of two equations solving optimization problems (gradient = zero) **□** 1879, Arthur Cayley: generalizing the Newton's method to finding complex roots of polynomials

Newton Method for Finding a Root

Goal:
$$\phi: \mathbb{R} \to \mathbb{R}$$
 $\phi(x^*) = 0$ $x^* = ?$

Linear Approximation (1st order Taylor approx):

$$\phi(\underline{x} + \Delta x) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|)$$

$$\chi^*$$

$$\phi(\underline{x} + \Delta x) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|)$$

$$\chi^*$$

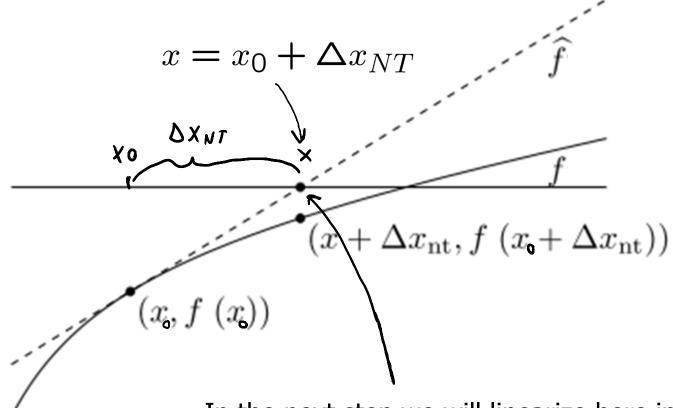
Therefore,

$$0 \approx \phi(x) + \phi'(x)\Delta x$$
$$x^* - x = \Delta x = -\frac{\phi(x)}{\phi'(x)}$$
$$x_{k+1} = x_k - \frac{\phi(x)}{\phi'(x)}$$

Illustration of Newton's method

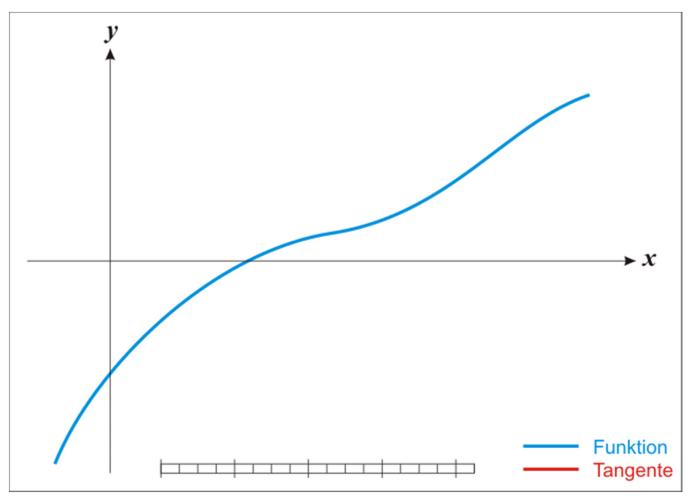
Goal: finding a root

$$\widehat{f}(x) = f(x_0) + f'(x_0)(x - x_0)$$



In the next step we will linearize here in *x*

Example: Finding a Root



http://en.wikipedia.org/wiki/Newton%27s_method

Newton Method for Finding a Root

This can be generalized to multivariate functions

$$F:\mathbb{R}^n\to\mathbb{R}^m$$

$$0_{m} = F(x^{*}) = F(x + \Delta x) = F(x) + \underbrace{\nabla F(x)}_{\mathbb{R}^{n \times n}} \underbrace{\Delta x}_{\mathbb{R}^{n}} + o(|\Delta x|)$$
Therefore

Therefore,

$$0_m = F(x) + \nabla F(x) \Delta x$$

$$\Delta x = -[\nabla F(x)]^{-1}F(x)$$

[Pseudo inverse if there is no inverse]

$$\Delta x = x_{k+1} - x_k, \text{ and thus}$$

$$x_{k+1} = x_k - [\nabla F(x_k)]^{-1} F(x_k)$$

Newton method: Start from x_0 and iterate.

Newton method for minimization

Newton method for minimization

 $f:\mathbb{R}^n o \mathbb{R}$, f is differentiable. $\min_{x \in \mathbb{R}^n} f(x)$

We need to find the roots of $\nabla f(x) = \mathbf{0}_n$ $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$

Newton system: $\nabla f(x) + \nabla^2 f(x) \Delta x = 0_n$

Newton step: $\Delta x = x_{k+1} - x_k = -[\nabla^2 f(x)]^{-1} \nabla f(x)$

Iterate until convergence, or max number of iterations exceeded (divergence, loops, division by zero might happen...)

How good is the Newton method?

Descent direction

Lemma [Descent direction]

If $\nabla^2 f \succ 0$, then Newton step is a descent direction.

Proof:

We know that if a vector has negative inner product with the gradient vector, then that direction is a descent direction

Newton step: $\Delta x = x_{k+1} - x_k = -[\nabla^2 f(x)]^{-1} \nabla f(x)$

$$\Rightarrow \nabla f(x)^T \Delta x = -\nabla f(x)^T [\nabla^2 f(x)]^{-1} \nabla f(x) < 0$$

Newton method properties

- ☐ Quadratic convergence in the neighborhood of a strict local minimum [under some conditions].
- \square It can break down if $f''(x_k)$ is degenerate. [no inverse]
- ☐ It can diverge.
- ☐ It can be trapped in a loop.
- ☐ It can converge to a loop...

Motivation with Quadratic Approximation

Motivation with Quadratic Approximation

 $f: \mathbb{R}^n \to \mathbb{R}$, f is differentiable.

Second order Taylor approximation:

Let
$$\phi(x) = f(x_k) + \nabla^T f(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^T \nabla^2 f(x_k)(x - x_k)$$

Assume that

$$\nabla^2 f(x_k) \succ 0$$
 [i.e. ϕ has strict global minimum]

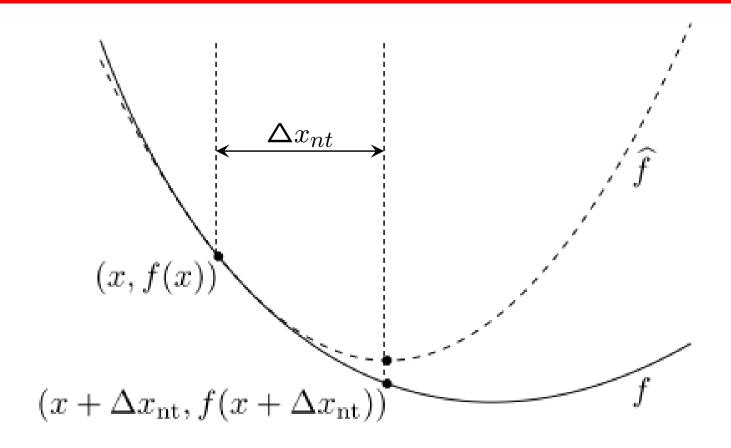
Now, if x_{k+1} is the global minimum of the quadratic function ϕ , then

$$0_n = \nabla \phi(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k)$$

Newton step:

$$\Delta x = x_{k+1} - x_k = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

Motivation with Quadratic Approximation



Quadratic approaximation is good, when x is close to x^*

$$\hat{f}(z) = f(x) + \nabla^T f(x)(z - x) + \frac{1}{2}(z - x)^T \nabla^2 f(x)(z - x)$$

Convergence rate (f: R→ R case)

Rates

A sequence $\{s_i\}$ exhibits linear convergence if $\lim_{i\to\infty} s_i = \bar{s}$, and

$$\lim_{i \to \infty} \frac{|s_{i+1} - \overline{s}|}{|s_i - \overline{s}|} = \delta < 1 \qquad \text{Example:} \qquad s_i = cq^i, \ 0 < q < 1$$

$$s_i = cq^i$$
, $0 < q < 1$

$$\frac{|s_{i+1} - \bar{s}|}{|s_i - \bar{s}|} = \frac{cq^{i+1}}{cq^i} = q < 1$$

Superlinear rate: $\delta = 0$ Example: $s_i = \frac{c}{i!}$

$$\frac{|s_{i+1} - \bar{s}|}{|s_i - \bar{s}|} = \frac{ci!}{c(i+1)!} = \frac{1}{i+1} \to 0$$

Sublinear rate: $\delta=1$ Example: $s_i=\frac{c}{i^a}$, a>0

$$s_i = \frac{c}{i^a}$$
 , $a > 0$

$$\frac{|s_{i+1} - \overline{s}|}{|s_i - \overline{s}|} = \frac{ci^a}{c(i+1)^a} = \left(\frac{i}{i+1}\right)^a \to 1$$

Quadratic rate:

$$\lim_{i \to \infty} \frac{|s_{i+1} - \overline{s}|}{|s_i - \overline{s}|^2} < \infty \quad \text{Example:} \quad s_i = q^{2^i} \text{ , } 0 < q < 1$$

$$s_i = q^{2^i}$$
 , $0 < q < 1$

Finding a root: Convergence rate

Goal: Find x^* s.t. $f(x^*) = 0$, where $f : \mathbb{R} \to \mathbb{R}$

Assumption: f has continuous second derviative in x^*

Taylor theorem: For a ξ_n between x_n and x^* , we have

$$0 = f(x^*) = f(x_n) + \nabla f(x_n)(x^* - x_n) + \frac{1}{2}\nabla^2 f(\xi_n)(x - x_n)^2$$

Therefore, assuming $\exists [\nabla f(x_n)]^{-1}$

$$0 = \left[\nabla f(x_n)\right]^{-1} f(x_n) + (x^* - x_n) + \frac{1}{2} \left[\nabla f(x_n)\right]^{-1} \nabla^2 f(\xi_n) (x - x_n)^2$$

$$\underbrace{[\nabla f(x_n)]^{-1} f(x_n) + (x^* - x_n)}_{X^* - X_{n+1}} = -\frac{1}{2} [\nabla f(x_n)]^{-1} \nabla^2 f(\xi_n) \underbrace{(x - x_n)^2}_{\xi_n^2}$$

$$\Rightarrow \epsilon_{n+1} = -\frac{1}{2} [\nabla f(x_n)]^{-1} \nabla^2 f(\xi_n) \epsilon_n^2$$

Finding a root: Convergence rate

We have seen that

$$\epsilon_{n+1} = -\frac{1}{2} \frac{\nabla^2 f(\xi_n)}{\nabla f(x_n)} \epsilon_n^2$$

Assume that $M = \sup_x \frac{1}{2} \frac{|\nabla^2 f(\mathbf{x})|}{|\nabla f(x)|} < \infty$

$$\Rightarrow |\epsilon_{n+1}| \le M\epsilon_n^2$$

Assume that $|\epsilon_0| = |x - x_0| < 1$

⇒ Quadratic convergence

Problematic cases

Finding a root: chaotic behavior

```
Let f(x)=x^3-2x^2-11x+12
```

Goal: find the roots, (-3, 1, 4), using Newton's method

```
2.35287527 converges to 4;
```

- 2.35284172 converges to -3;
- 2.35283735 converges to 4;
- 2.352836327 converges to -3;
- 2.352836323 converges to 1.

Finding a root: Cycle

$$f(x) = x^3 - 2x + 2$$
Goal: find its roots

$$x_0 = 0 \quad X_1 = 1, \quad X_2 = 0, \quad X_3 = 1, \quad X_4 = 0, \dots = 2$$
Goal: find its roots

$$x_0 = 0 \quad X_1 = 1, \quad X_2 = 0, \quad X_3 = 1, \quad X_4 = 0, \dots = 2$$

Finding a root: divergence everywhere (except in the root)

Newton's method might never converge (except in the root)!

$$f(x) = \sqrt[3]{x} \qquad \lim_{x \to 0} \frac{1}{2} \frac{|\nabla^2 f(\mathbf{x})|}{|\nabla f(x)|} = \lim_{x \to 0} \frac{c}{|x|} = \infty$$

$$\nabla^2 f(x) = -\frac{2}{9} x^{-5/3}$$

$$\begin{array}{c} 1.0 \\ 0.5 \\ \hline -2 & -1 \\ \hline & -1.0 \end{array}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n \frac{1}{3}}{\frac{1}{3} x_n \frac{1}{3} - 1} = x_n - 3 x_n = -2 x_n$$

Finding a root: Linear convergence only

If the first derivative is zero at the root, then convergence might be only linear (not quadratic)

$$f(x) = x^2$$

$$\nabla f(x) = 2x$$

$$\nabla^2 f(x) = 2$$

$$\lim_{x \to 0} \frac{1}{2} \frac{|\nabla^2 f(x)|}{|\nabla f(x)|} = \lim_{x \to 0} \frac{1}{|x|} = \infty$$

$$\nabla^2 f(x) = 2$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - x_n^2/(2x_n) = x_n/2$$

Linear convergence only!

Difficulties in minimization

$$f(x) = 7x - \ln(x)$$

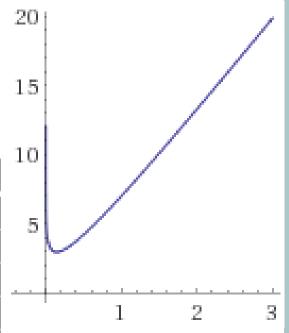
$$f'(x) = 7 - \frac{1}{x}$$

$$f''(x) = \frac{1}{x^2}$$

$$x^{k+1} = x^k + (x^k - 7(x^k)^2) = 2x^k - 7(x^k)^2$$

k	x^k	x^k	x^k	x^k
0	1.0	0	0.1	0.01
1	-5.0	0	0.13	0.0193
2	-185.0	0	0.1417	0.03599257
3	-239,945.0	0	0.14284777	0.062916884
4	-4.0302×10^{11}	0	0.142857142	0.098124028
5	-1.1370×10^{24}	0	0.142857143	0.128849782
6	-9.0486×10^{48}	0	0.142857143	0.1414837
7	-5.7314×10^{98}	0	0.142857143	0.142843938
8	$-\infty$	0	0.142857143	0.142857142
9	$-\infty$	0	0.142857143	0.142857143
10	$-\infty$	0	0.142857143	0.142857143

$$x^* = \frac{1}{7} = 0.142857143$$



range of quadratic convergence

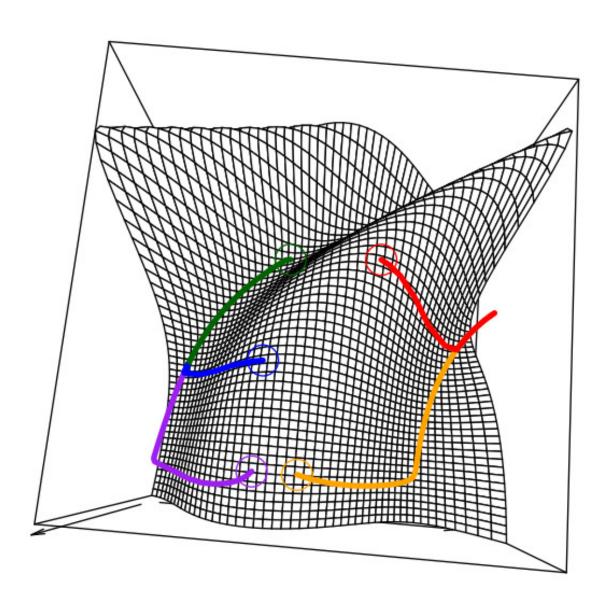
$$x \in (0.0, 0.2857143)$$

Generalizations

- □ Newton method in Banach spaces
 - Newton method on the Banach space of functions
 - We need Frechet derivatives
- Newton method on curved manifolds
 - E.g. on space of otrthonormal matrices
- □ Newton method on complex numbers

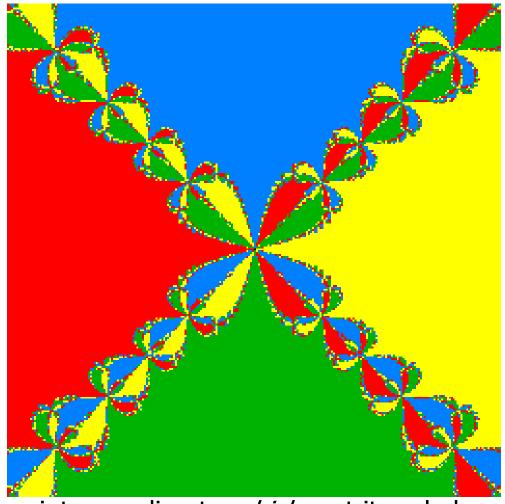
Newton Fractals

Gradient descent



Compex functions

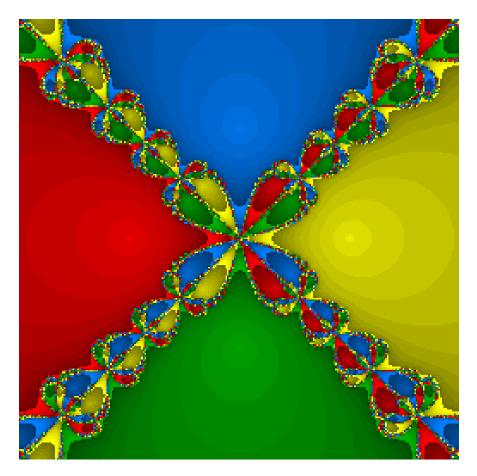
$$f(z) = z^4-1$$
, Roots: -1, +1, -i, +i



color the starting point according to which root it ended up

Basins of attraction

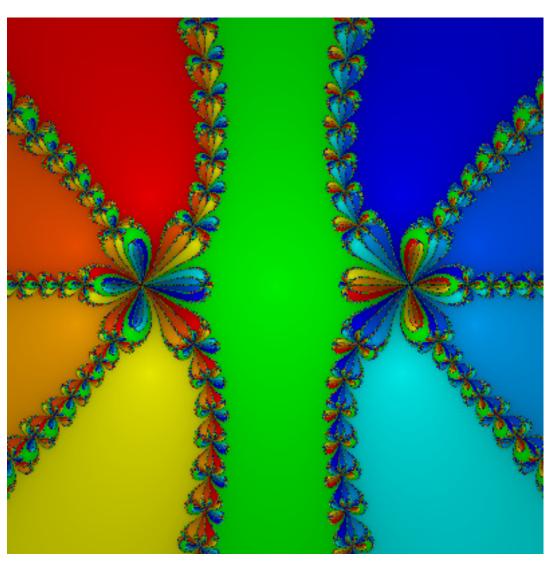
$$f(z) = z^4-1$$
, Roots: -1, +1, -i, +i



Shading according to how many iterations it needed till convergence

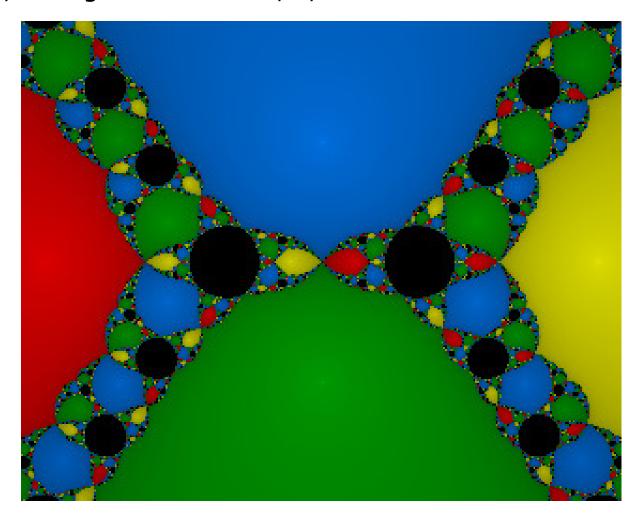
Basins of attraction

$$f'(z)=(z-1)^4(z+1)^4$$



No convergence

polynomial f, having the roots at +i, -i, -2.3 and +2.3



Black circles: no convergence, attracting cycle with period 2

Avoiding divergence

Damped Newton method

In order to avoid possible divergence do line search with back tracking

$$x_{k+1} = x_k - h_k [f''(x_k)]^{-1} f'(x_k)$$
INITIAL STAGE: LINE SEARCH FOR $h_k > 0$

$$FINAL STAGE: h_k = 1 \left[NtWTON \ STEP \right]$$

We already know that the Newton direction is descent direction

Classes of differentiable functions

Classes of Differentiable functions

 Any continuous (but otherwise ugly, nondifferentiable) function can be approximated arbitrarily well with smooth (k times differentiable) function

 Assuming smoothness only is not enough to talk about rates...

We need stronger assumptions on the derivatives.
 [e.g. their magnitudes behaves nicely]

The C_L^{k,p}(Q) Class

Definition

$$C_L^{k,p}(Q) = \{f: Q \to \mathbb{R} \\ f \text{ is k-times continuously differentiable on } Q \subseteq \mathbb{R}^n \\ k \geq p \\ \|f^{(p)}(x) - f^{(p)}(y)\| \leq L \|x - y\|, \ \forall x,y \in Q \\ \}$$
 [Lipschitz continuous pth order derivative]

Notation

$$C^k(Q) = \{f: Q \to \mathbb{R}$$

$$f \text{ is } k\text{-times continuously differentiable on } Q \subseteq \mathbb{R}^n \ \}$$

Trivial Lemmas

Lemma [Linear combinations]

$$f_{1} \in C_{L_{1}}^{k,p}(Q)$$

$$f_{2} \in C_{L_{2}}^{k,p}(Q)$$

$$\alpha, \beta \in \mathbb{R}$$

$$L_{3} = |\alpha|L_{1} + |\beta|L_{2}$$

$$\Rightarrow \alpha f_{1} + \beta f_{2} \in C_{L_{3}}^{k,p}(Q)$$

Lemma [Class hierarchy]

If
$$q \geq r$$
, then $C_L^{q,p}(Q) \subseteq C_L^{r,p}(Q)$ $\in \mathcal{C}_L^{\prime,l}(\mathbb{Q})$

Relation between 1st and 2nd derivatives

Lemma Let f be twice differentiable on \mathbb{R}^n

$$f'(x + \alpha(y - x)) - f'(x) = \int_0^\alpha f''(x + \tau(y - x))(y - x) d\tau$$

Proof Let $\phi(\tau) = f'(x + \tau(y - x))$. Now we have that

$$\phi(0) = f'(x)$$

$$\phi(\alpha) = f'(x + \alpha(y - x))$$

$$\phi'(\tau) = f''(x + \tau(y - x))(y - x)$$

Therefore,

$$f'(x + \alpha(y - x)) - f'(x) = \phi(\alpha) - \phi(0)$$

$$= \int_0^\alpha \phi'(\tau) d\tau$$

$$= \int_0^\alpha f''(x + \tau(y - x))(y - x) d\tau$$
OFD

Special case,

$$f'(y) - f'(x) = \int_0^1 f''(x + \tau(y - x))(y - x) d\tau$$

C_L^{2,1}(Rⁿ) and the norm of f"

Lemma $[C_1^{2,1}]$ and the norm of f"]

Let f be twice differentiable on \mathbb{R}^n

Then
$$||f''(x)||_{op} \le L \, \forall x \in \mathbb{R}^n \Leftrightarrow f \in C_L^{2,1}(\mathbb{R}^n)$$

Proof

$$f'(y) - f'(x) = \int_0^1 f''(x + \tau(y - x))(y - x) d\tau$$

$$\Rightarrow ||f'(y) - f'(x)|| \le \int_0^1 ||f''(x + \tau(y - x))(y - x)|| d\tau$$

$$\le \int_0^1 ||f''(x + \tau(y - x))||_{op} d\tau ||(y - x)||$$

$$\le ||(y - x)|| \int_0^1 L d\tau = L||(y - x)||$$

$$\Rightarrow f \in C_L^{2,1}(\mathbb{R}^n)$$
Q.E.D

$C_1^{2,1}(\mathbb{R}^n)$ and the norm of f"

$$||f''(x)||_{op} \le L \, \forall x \in \mathbb{R}^n \Leftrightarrow f \in C_L^{2,1}(\mathbb{R}^n)$$

Proving the other direction

$$f \in C_L^{2,1}(\mathbb{R}^n) \Rightarrow$$

With s = y - x, we have seen that

$$f'(x + \alpha s) - f'(x) = \int_0^\alpha f''(x + \tau s) d\tau s$$

$$\Rightarrow \| \int_0^\alpha f''(x+\tau s) \, d\tau s \| = \| f'(x+\alpha s) - f'(x) \| \le L \| \alpha s \|$$

$$\Rightarrow \frac{1}{\alpha} \| \int_0^\alpha f''(x + \tau s) d\tau s \| \le L \| s \| \qquad + \epsilon c_L^{2,1}(\mathbb{R}^n) \quad \forall s \in \mathbb{R}^n$$

$$\| f''(x) \cdot s \|$$

$$\Rightarrow \frac{\|f''(x)s\|}{\|s\|} \le L$$

$$\Rightarrow \|f''(x)\|_{op} \le L$$
 Q.E.D

Examples

•
$$f(x) = d + da, x > E C''(R')$$

• $f(x) = d + da, x > + \frac{1}{2} da, x > E C''(R')$
• $f(x) = d + da, x > + \frac{1}{2} da, x > E C''(R')$
• $f(x) = \sqrt{1 + x^2} e C''(R)$

Error of 1st orderTaylor approx. in C₁^{1,1}

Lemma [1st orderTaylor approximation in C₁1,1]

$$f \in C_L^{1,1}(\mathbb{R}^n) \Longrightarrow |f(y) - f(x) - \langle f'(x), y - x \rangle| \leq \frac{L}{2} ||y - x||^2$$

$$x, y \in \mathbb{R}^n$$

Proof

Proof
$$f(y) = f(x) + \int_0^1 \langle f'(x + \tau(y - x)), y - x \rangle d\tau$$

$$\Rightarrow |f(y) - f(x) - \langle f'(x), y - x \rangle| = |\int_0^1 \langle f'(x + \tau(y - x)), y - x \rangle d\tau - \langle f'(x), y - x \rangle|$$

$$= |\int_0^1 \langle f'(x + \tau(y - x)) - f'(x), y - x \rangle d\tau|$$

$$\leq \int_0^1 |\langle f'(x + \tau(y - x)) - f'(x), y - x \rangle| d\tau$$

Error of 1st orderTaylor approx. in $C_L^{1,1}$

$$\Rightarrow |f(y) - f(x) - \langle f'(x), y - x \rangle| \leq \int_0^1 |\langle f'(x + \tau(y - x)) - f'(x), y - x \rangle| d\tau$$

$$\leq \int_0^1 ||f'(x + \tau(y - x)) - f'(x)|| ||y - x|| d\tau$$

$$\leq \int_0^1 ||f'(x + \tau(y - x)) - f'(x)|| ||y - x|| d\tau$$

$$\leq \int_0^1 L\tau \|y - x\|^2 d\tau = \frac{L}{2} \|y - x\|^2$$

Q.E.D

Sandwiching with quadratic functions in C_L^{1,1}

We have proved:

$$f \in C_L^{1,1}(\mathbb{R}^n) \Rightarrow |f(y) - f(x) - \langle f'(x), y - x \rangle| \le \frac{L}{2} ||y - x||^2$$
$$x, y \in \mathbb{R}^n$$

Corollary [Sandwiching $C_L^{1,1}$ functions with quadratic functions]

$$f \in C_L^{1,1}(\mathbb{R}^n) \Rightarrow f(x_0) + \langle f'(x_0), x - x_0 \rangle - \frac{L}{2} ||x - x_0||^2 \le f(x)$$
$$f(x) \le f(x_0) + \langle f'(x_0), x - x_0 \rangle + \frac{L}{2} ||x - x_0||^2$$

Function f can be lower and upper bounded with quadratic functions

C_L^{2,2}(Rⁿ) Class

Lemma [Properties of C_L^{2,2} Class]

$$\begin{cases}
f \in C_L^{2,2}(\mathbb{R}^n) \\
x, y \in \mathbb{R}^n
\end{cases}$$

$$||f''(x) - f''(y)||_{op} \le L||y - x|| \quad (*1)$$

$$||f'(y) - f'(x) - f''(x)(y - x)|| \le \frac{L}{2}||y - x||^2 \quad (*2)$$

[Error of the 1st order approximation of f']

$$||f(y)-f(x)-f'(x)^{T}(y-x)-\frac{1}{2}(y-x)^{T}f''(x)(y-x)|| \le \frac{L}{6}||y-x||^{3} \quad (*3)$$

[Error of the 2nd order approximation of f]

Proof (*1) Definition

- (*2) Same as previous lemma [f' instead of f]
- (*3) Similar [Homework]

Sandwiching f''(y) in $C_L^{2,2}(\mathbb{R}^n)$

By definition

$$\begin{cases}
f \in C_L^{2,2}(\mathbb{R}^n) \\
x, y \in \mathbb{R}^n
\end{cases} \Longrightarrow ||f''(x) - f''(y)||_{op} \le L||y - x|| \quad (*1)$$

Corollary [Sandwiching f''(y) matrix]

$$f \in C_L^{2,2}(\mathbb{R}^n)$$

$$||x-y|| = r$$

$$\Rightarrow f''(x) - Lr\mathbf{I}_n \leq f''(y) \leq f''(x) + Lr\mathbf{I}_n$$

Proof
$$f \in C_L^{2,2}(\mathbb{R}^n) \implies \|f''(x) - f''(y)\|_{op} \le L\|y - x\| = Lr$$

$$\Rightarrow |\lambda_i(G)| \le Lr \ \forall i = 1, \dots, n$$

$$\Rightarrow \begin{cases} f''(x) - f''(y) = G \le Lr\mathbf{I}_n \\ f''(y) - f''(x) = -G \le Lr\mathbf{I}_n \end{cases}$$
O.E.D

Assumptions

$$f \in C_L^{2,2}(\mathbb{R}^n)$$

 \exists local minimum x^* of f with pos def Hessian in x^* : $f''(x^*) \succeq l\mathbf{I}_n$ for some l > 0

 x_0 is close enough to x^* [Local convergence only]

Newton step: $x_{k+1} = x_k - [f''(x_k)]^{-1}f'(x_k)$

Newton step:

$$x_{k+1} - x^* = x_k - x^* - [f''(x_k)]^{-1} f'(x_k)$$

We already know:

$$f'(x_k) = f'(x_k) - f'(x^*) = \int_0^1 f''(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

Therefore,

$$x_{k+1} - x^* = x_k - x^* - [f''(x_k)]^{-1} \int_0^1 f''(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

Trivial identity:
$$x_k - x^* = [f''(x_k)]^{-1} \int_0^1 f''(x_k)(x_k - x^*) d\tau$$

$$\Rightarrow x_{k+1} - x^* = [f''(x_k)]^{-1}G_k(x_k - x^*)$$

where
$$G_k = \int_0^1 [f''(x_k) - f''(x^* + \tau(x_k - x^*))] d\tau$$

$$G_{k} = \int_{0}^{1} [f''(x_{k}) - f''(x^{*} + \tau(x_{k} - x^{*}))] d\tau$$

$$\Rightarrow \|G_{k}\|_{op} \leq \int_{0}^{1} \|f''(x_{k}) - f''(x^{*} + \tau(x_{k} - x^{*}))\|_{op} d\tau$$

$$\Rightarrow \int_{0}^{2} \int_{0}^{1} L\|x_{k} - x^{*} - \tau(x_{k} - x^{*})\| d\tau$$

$$f \in C_{L}^{2,2}(\mathbb{R}^{n})$$

$$= \int_{0}^{1} L(1 - \tau)\|x_{k} - x^{*}\| d\tau = \int_{0}^{1} L(1 - \tau)r_{k} d\tau \leq \frac{Lr_{k}}{2}$$

$$\Rightarrow \|G_{k}\|_{op} \leq \frac{Lr_{k}}{2}$$

We have already proved:

$$\begin{cases}
f \in C_L^{2,2}(\mathbb{R}^n) \\
||x-y|| = r
\end{cases} \Longrightarrow f''(x) - Lr\mathbf{I}_n \preceq f''(y) \preceq f''(x) + Lr\mathbf{I}_n$$

Therefore,

$$f''(x_k) \succeq f''(x^*) - Lr_k \mathbf{I}_n \succeq l \mathbf{I}_n - Lr \mathbf{I}_n = (l - Lr_k) \mathbf{I}_n$$

$$\gamma = (l - Lr_k) \mathbf{I}_n$$

and thus,

If
$$l-Lr_k>0$$
, then $\begin{cases} f''(x_k) \text{ is positive definite} \\ \|[f''(x_k)]^{-1}\|_{op}\leq \frac{1}{l-Lr_k} \end{cases}$

We already know:

$$r_{k+1} = \|x_{k+1} - x^*\| = \|[f''(x_k)]^{-1}G_k(x_k - x^*)\|$$

$$\leq \|[f''(x_k)]^{-1}\|_{op} \|G_k\|_{op} \|(x_k - x^*)\|$$

$$\uparrow \qquad \qquad \uparrow$$

$$\leq (l - Lr_k)^{-1} \qquad \leq \frac{r_k}{2}L \qquad = r_k$$

$$\Rightarrow r_{k+1} \leq \frac{Lr_k^2}{2(l-Lr_k)}$$

$$\Rightarrow r_{k+1} \leq \frac{Lr_k^2}{2(l-Lr_k)}$$

Now, we have that

If
$$l > Lr_k$$

 $2l > 3Lr_k$ $\Rightarrow r_{k+1} \le \frac{Lr_k^2}{2(l-Lr_k)} = \frac{Lr_k^2}{2l-2Lr_k}$
 $< \frac{Lr_k^2}{3Lr_k-2Lr_k} = r_k$

The error doesn't increase!

We have proved the following theorem

Theorem [Rate of Newton's method]

Let f satisfy the above asumptions $\bar{r} \doteq \|x_0 - x^*\| \leq \frac{2l}{3L}$ \Rightarrow

$$\Rightarrow \begin{cases} ||x_k - x^*|| \le \overline{r} \ \forall k \\ ||x_{k+1} - x^*|| \le \frac{L||x_k - x^*||^2}{2(l - L||x_k - x^*||)} \le \begin{cases} c||x_k - x^*||^2 \\ ||x_k - x^*|| \end{cases}$$

 \Rightarrow Quadratic rate!

Summary

Newton method

- ☐ Finding a root
- ☐ Unconstrained minimization
 - Motivation with quadratic approximation
 - Rate of Newton's method
- Newton fractals

Classes of differentiable functions