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Quasi Newton Methods



O Modified Newton Method
O Rank one correction of the inverse
O Rank two correction of the inverse
= Davidon—Fletcher—Powell Method (DFP)
= Broyden—Fletcher—Goldfarb—Shanno Method (BFGS)
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Motivation:

Evaluation and use of the Hessian matrix is impractical or costly

Idea:

use an approximation to the inverse Hessian.

Quasi Newton:

somewhere between steepest descent and Newton’s method



Modified Newton Method

Goal: min f(x)

Gradient descent:
Tr41 =z — o Vf(xg), ap >0
Newton method:
Tpt1 = zg — [V2f(@p)] 71V f(2g)
Modified Newton method: [Method of Deflected Gradients]
Tp+1 = T — pSEV ()
Sk - Ran' Q. R
Special cases: S, = I,,: Gradient descent
S, = [V2f(z)]~1: Newton method



Modified Newton Method

Tp41 = T — oSV f(xg)

Lemma [Descent direction]

S = 0 = the modified Newton step is a descent direction.

Proof:

We know that if a vector has negative inner product with the gradient
vector, then that direction is a descent direction

= Vf(zp)! (@11 — 21) = =V f(zp) T apSpVF(z) <0



Quadratic problem

:chIRr}l f () f(x) = —:1;' T0r — by
Assume matrix Q € R”X” is positive definite

Let g, = Vf(zp) = Qrp — b

Modified Newton Method update rule:

Tht+1 = Tk — QESKIE
Lemma [, in quadratic problems]
Let o, = arg ming f(xr — aSLgL)

9 Skar

= Q. =
& 9t SkQSkyr




Quadratic problem

1
Lemma [ in quadratic problems] f(x) = ExTQZC .
gr = Vf(xp) = Qxp, — b
Let oy, = arg ming f(xp — aSrgi)
9 Sk

= L. =
& 91 SkQSkgk
Proof [o,]

1
f(z) = 5[37]@ — aSkar)! Qlzy, — aSigr] — b [z, — Sy
0 = Vf(ay) = —gi SiQlzr — arSkgr] + bl Skay
= o), SkQSkgr = 94, SkQxr, — g, Skb
i
>
9t Skar PR A
91 SkQ Sk ;

= O =



Convergence rate (Quadratic case)

Theorem [Convergence rate of the modified Newton method]

Let ™ be the unique minimum point of f.

Let e(zy) = 5(zg — )T Q(zy, — z*) [Error of z]

Then for the modified Newton method it holds at every step k

>
By, — by,
e(rp41) < (Bk+bk) ()

where b, and By are, respectively, the smallest and
largest eigenvalues of the matrix S,.Q

Corollary

If S, is close to Q, then b, is close to B,, and then convergence is fast

Proof: No time for it... 0



Classical modified Newton’s method

Classical modified Newton:

Standard method for approximating the Hessian
without evaluating [V2f(x;)]~ ! for each k.

Tpt1 = 2 — ap[V2F(20)] "1V F(z)

The Hessian at the initial point x, is used throughout the process.

The effectiveness depends on how fast the Hessian is changing.

11



Construction of the inverse

of the Hessian

12



Construction of the inverse

Idea behind quasi-Newton methods: construct the approximation of
the inverse Hessian using information gathered during the process

We show how the inverse Hessian can be built up from gradient
information obtained at various points.

Notation:
gr+1 = Vf(zrg1) 9k = VI(zp)
Pk = Tp41 — Tk Q(zy) = V2 f(xp)

ak = Gr+1 — 9k = Vi(zp41) — Vi(zg) = Q(zr)ps
In the quadratic case
gr. = Vf(xr) = Qx;. — b, and therefore

Gk = gk+1 — 9k = Q@41 — 7)) = Qpy, 5



Construction of the inverse

Quadratic case: 9k = &Pk Let H = Q1

If n linearly independent directions pg,p1...p,—1 and the corres-
ponding qp,q1,-..9,—1 Aare known, then @ is uniquely determined.

l90,q1; - - - gn—1) = Qlpo, P1,- - -Pn—1]

= Q = [q0,91, - - Gn-11lP0;P1, -+ - Pr—1]"1
= Hlq0,91,.--9n—1] = [pPo,P1,-. . DPn—1]

Goal:

We will construct successive approximations H, to H based on
data obtained from the first k steps such that

Hy1 190,91, --9x] = [po,p1,- - Pkl

After n linearly independent steps we would then have H,, = H. 14



Symmetric rank one correction (SR1)

We want an update on H, such that :

Hy1 190,91, --9x] = [po,p1,- - - Pkl

Let us find the update in this form [Rank one correction]
Hk—|—1 — Hk —|— akzkzg
We need a good a; € R and z, € R”

Theorem [Rank one update of H,]

If Hiy1[q0,91,---9x] = [po,P1,--- Dkl

and Hk—l—l — Hk + akzkzg

(P — Hrqr) (o — Hipqi) !
a; (pr, — Hyax,)

= Hk—l—l =Hk;+

15



Symmetric rank one correction (SR1)

Proof: e already know that
[p0s D1, - - - Pkl = Hpy1ld0, 1, - - axl, and Hpy1 = Hy, + apzpzg
Therefore,

pr = Hir1ax = [Hg + apzizi lag = Hiar, + arziz) ax

pr — Hiqi, = akazg%

—H I
(P k%)cgzk k9E)T — = apzp2l qrgl 22l = agpz (2L qp)22E
Hysq = Hy, + (P, — Hiar) (pr, — Hiap)?

a (2L ar)?

ai pr = ai Hyar + arai 212t ax = af Hyap + ap(al 21,)?

(P — Hrqr) (o — Hipqi) !
a; (pr, — Hyax,)

= Hyp41 = Hp + Q.E.D.

16



Symmetric rank one correction (SR1)

We still have to proof that this update will be good for us:

Theorem [H, update works]

Let Q € R"™ be a given positive definite matrix.
p; € R™ (0 <4< k) given vectors.
qi=Qp,,;, Vizo,l,...,k
Hp € R™*™ initial symmetric matrix.

T
If i« — H + Pi=Hiq)(pi—Hiq;) then
il it q} (pi—Hiq;)

Hi11l90,91,---9x] = [po,p1,- - - Pkl

Corollary
If po,...p,_1 are independent = H, = H = Q1. 17



Symmetric rank one correction (SR1)

Algorithm: [Modified Newton method with rank 1 correction]
Tp41 = T — oy gy
where ap = arg ming f(x, — aHpgr) [Line search]

gr = Vf(xg)
(pr — Hyar) (o — Hrap)?

Hpy1 = Hp +
+ at (pr; — Hiay,)
Pk — Lk41 — Lk di — 9k+1 — 9k
Issues:

Although H; is symmetric, it might not be positive definite.
If q}f(pk — Hpq,) is close to zero, then it is numerically unstable.

18



Davidon—Fletcher—Powell Method

[Rank two correction]



Davidon—Fletcher—Powell Method

d For a quadratic objective, it simultaneously generates the directions of
the conjugate gradient method while constructing the inverse Hessian.

[ At each step the inverse Hessian is updated by the sum of
two symmetric rank one matrices. [rank two correction procedure]

1 The method is also often referred to as the variable metric method

20



Davidon—Fletcher—Powell Method

Hp € R™*™ initial symmetric, pos. def. matrix.
20 ER?, k=0 9k = V/(zg)

Step 1. dp, = —Hg; [Search direction]
Step 2. ap = argmin,~g f(xi + ady) [Line search]

Tp41 = T + apdy

P = Tp41 — T = agdy
gk+1 = Vf(zp41)

Step 3. qr = gk+1 — 9k

T
pept  Hyqugl Hy

H = Hp + & — k rank 2 update

k41 k P, ax q; Hiar [ P J

k=k-+ 1 and return to Step 1.

21



Davidon—Fletcher—Powell Method

Theorem [H, is positive definite]

In the DFP method if Hg > O, then Hy > O.

Theorem [DFP is a conjugate direction method]

If f is quadratic with positive definite Hessian (), then for the
Davidon-Fletcher-Powell method

pIQp;=0,0<i<j<k
Hp11Qp; =p;j, 0<i<k

Corollary [finite step convergence for quadratic functions]

If f is quadratic with positive definite Hessian Q, then H, = Q1

22



Broyden—Fletcher—Goldfarb—Shanno

In DFP, at each step the inverse Hessian is updated by the sum of
two symmetric rank one matrices.

BFGS we will estimate the Hessian Q, instead of its inverse

In the quadratic case we already proved:
Qlro,r1,---Pn-1l = lao, a1, - - - an—1]
Hlqo0,491;,- - - an—1] = [P0, P15+ - - Pn—1l

To estimate H, we used the update:
(pr. — Hiar) (pr — Har)'
a; (pr — Hyay,)
Therefore, if we switch q and p, then Q can be estimated as well with Q,

. (g, — Qupr)(ar — Qrpr)?t
Pet1= Q¥ p}. (a — Qrpi) 23

Hpyq1 = Hp+




BFGS

Similarly, the DFP update rule for H is

HPFP — H, 4 prpy,  Hyaray, Hi

k41 piar  q} Hiax '

Switching g and p, this can also be used to estimate Q:

QBFGS — 0, + adp  Quprpl Qi
kt1 q; Pk Py Qkpr |

In the minimization algorithm, however, we will need an estimator of Q1

BFGS — 11
Let Hk;+1 — Qk-l—l

To get an update for H,,,, let us use the Sherman-Morrison formula twice

HBFGS — gBFGS o (1 L GHE S\ pup _ peaf HYTOS A HPT S qyp)
i1 = Hy T T T
P4k P 4k 4. Pk

24



Sherman-Morrison matrix inversion

formula

Suppose A is an invertible square matrix and «, v are vectors.

Suppose furthermore that 1 + v1'A=1y # 0.

Then the Sherman-Morrison formula states that

A Lyt A1

A Tv-1_ -1 _
(A+uw’) 14+ vl A1y

25



BFGS Algorithm

Hgy € R™"*™ jnitial symmetric, pos. def. matrix.

rg €ER™, k=0 g = Vf(zp)

Step 1. dp, = —Hg; [Search direction]

Step 2. ap = argmin,~g f(xi + ady) [Line search]
Tpi1 = T + pdy Pk = T41 — T = oyedy
gk+1 = Vf(@p41)

Step 3. qr = gk+1 — 9k

HgBFGS — gBFGS + (14 ngEFGqu Pkpg . qugHEFGS‘FH;?FGSQkP;{
k+1 — 7k pT T T
L 9k P4k d;. Pk

k=k-+ 1 and return to Step 1.

BFGS is almost the same as DFP, only the H update is different.

In practice BFGS seems to work better than DFP. 26



O Modified Newton Method
O Rank one correction of the inverse
O Rank two correction of the inverse
= Davidon—Fletcher—Powell Method (DFP)
= Broyden—Fletcher—Goldfarb—Shanno Method (BFGS)
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