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Duality in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B ≤ minx∈C f(x)

E.g., consider the following simple LP

min
x,y

x+ y

subject to x+ y ≥ 2

x, y ≥ 0

What’s a lower bound? Easy, take B = 2

But didn’t we get “lucky”?
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Try again:

min
x,y

x+ 3y

subject to x+ y ≥ 2

x, y ≥ 0

x+ y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2

More generally:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

a+ b = p

a+ c = q

a, b, c ≥ 0

Lower bound B = 2a, for any
a, b, c satisfying above
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What’s the best we can do? Maximize our lower bound over all
possible a, b, c:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Called primal LP

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP

Note: number of dual variables is number of primal constraints
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Try another one:

min
x,y

px+ qy

subject to x ≥ 0

y ≤ 1

3x+ y = 2

Primal LP

max
a,b,c

2c− b

subject to a+ 3c = p

−b+ c = q

a, b ≥ 0

Dual LP

Note: in the dual problem, c is unconstrained
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General form LP

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr

min
x∈Rn

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u∈Rm,v∈Rr

−bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (Ax− b) + vT (Gx− h) ≤ 0, i.e.,

(−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value
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Max flow and min cut

Soviet railway network (from Schrijver (2002), “On the history of
transportation and maximum flow problems”)
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s

t

fij
cij

Given graph G = (V,E), define flow fij ,
(i, j) ∈ E to satisfy:

• fij ≥ 0, (i, j) ∈ E
• fij ≤ cij , (i, j) ∈ E
•
∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj , k ∈ V \{s, t}

Max flow problem: find flow that maximizes total value of flow
from s to t. I.e., as an LP:

max
f∈R|E|

∑
(s,j)∈E

fsj

subject to fij ≥ 0, fij ≤ cij for all (i, j) ∈ E∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj for all k ∈ V \ {s, t}
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Derive the dual, in steps:

• Note that∑
(i,j)∈E

(
− aijfij + bij(fij − cij)

)
+

∑
k∈V \{s,t}

xk

( ∑
(i,k)∈E

fik −
∑

(k,j)∈E

fkj

)
≤ 0

for any aij , bij ≥ 0, (i, j) ∈ E, and xk, k ∈ V \ {s, t}
• Rearrange as ∑

(i,j)∈E

Mij(a, b, x)fij ≤
∑

(i,j)∈E

bijcij

where Mij(a, b, x) collects terms multiplying fij
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• Want to make LHS in previous inequality equal to primal

objective, i.e.,


Msj = bsj − asj + xj want this = 1

Mit = bit − ait − xi want this = 0

Mij = bij − aij + xj − xi want this = 0

• We’ve shown that

primal optimal value ≤
∑

(i,j)∈E

bijcij ,

subject to a, b, x satisfying constraints. Hence dual problem is
(minimize over a, b, x to get best upper bound):

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij + xj − xi ≥ 0 for all (i, j) ∈ E
b ≥ 0, xs = 1, xt = 0
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Suppose that at the solution, it just so happened

xi ∈ {0, 1} for all i ∈ V
Call A = {i : xi = 1} and B = {i : xi = 0}, note that s ∈ A and
t ∈ B. Then the constraints

bij ≥ xi − xj for (i, j) ∈ E, b ≥ 0

imply that bij = 1 if i ∈ A and j ∈ B, and 0 otherwise. Moreover,
the objective

∑
(i,j)∈E bijcij is the capacity of cut defined by A,B

I.e., we’ve argued that the dual is
the LP relaxation of the min cut
problem:

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all i, j
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Therefore, from what we know so far:

value of max flow ≤
optimal value for LP relaxed min cut ≤

capacity of min cut

Famous result, called max flow min cut theorem: value of max flow
through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a
phenomenon called strong duality

How often does this happen? More on this later
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(From F. Estrada et al. (2004), “Spectral embedding and min cut
for image segmentation”)
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Another perspective on LP duality

min
x∈Rn

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u∈Rm, v∈Rr

−bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) := g(u, v)
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In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0

Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v

−∞ otherwise

Now we can maximize g(u, v) over u and v ≥ 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)

15



Outline

Rest of today:

• Lagrange dual function

• Langrange dual problem

• Examples

• Weak and strong duality

16



Lagrangian

Consider general minimization problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

New variables u ∈ Rm, v ∈ Rr, with u ≥ 0 (implicitly, we define
L(x, u, v) = −∞ for u < 0)
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Important property: for any u ≥ 0 and v,

f(x) ≥ L(x, u, v) at each feasible x

Why? For feasible x,

L(x, u, v) = f(x) +

m∑
i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑
j=1

vj `j(x)︸ ︷︷ ︸
=0

≤ f(x)

• Solid line is f

• Dashed line is h, hence
feasible set ≈ [−0.46, 0.46]

• Each dotted line shows
L(x, u, v) for different
choices of u ≥ 0 and v

(From B & V page 217)
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Lagrange dual function

Let C denote primal feasible set, f? denote primal optimal value.
Minimizing L(x, u, v) over all x ∈ Rn gives a lower bound:

f? ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) := g(u, v)

We call g(u, v) the Lagrange dual function, and it gives a lower
bound on f? for any u ≥ 0 and v, called dual feasible u, v

• Dashed horizontal line is f?

• Dual variable λ is (our u)

• Solid line shows g(λ)

(From B & V page 217)
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Quadratic program

Consider quadratic program (QP, step up from LP!)

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) = min
x∈Rn

L(x, u, v) = −1

2
(c−u+AT v)TQ−1(c−u+AT v)−bT v

For any u ≥ 0 and any v, this is lower a bound on primal optimal
value f?
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Same problem

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

but now Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) =


−1

2(c− u+AT v)TQ+(c− u+AT v)− bT v
−∞ if c− u+AT v ⊥ null(Q)

−∞ otherwise

where Q+ denotes generalized inverse of Q. For any u ≥ 0, v, and
c− u+AT v ⊥ null(Q), g(u, v) is a nontrivial lower bound on f?
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Quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to x ≥ 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u ≥ 0

x1 / u1 x2 / u
2

f / g

●●

primal

dual

Dual function g(u)
provides a bound on
f? for every u ≥ 0

Largest bound this
gives us: turns out
to be exactly f? ...
coincidence?

More on this later
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Lagrange dual problem

Given primal problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Our constructed dual function g(u, v) satisfies f? ≥ g(u, v) for all
u ≥ 0 and v. Hence best lower bound is given by maximizing
g(u, v) over all dual feasible u, v, yielding Lagrange dual problem:

max
u∈Rm, v∈Rr

g(u, v)

subject to u ≥ 0

Key property, called weak duality: if dual optimal value g?, then

f? ≥ g?

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

g(u, v) = min
x∈Rn

{
f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)
}

= −max
x∈Rn

{
− f(x)−

m∑
i=1

uihi(x)−
r∑

j=1

vj`j(x)
}

︸ ︷︷ ︸
pointwise maximum of convex functions in (u, v)

I.e., g is concave in (u, v), and u ≥ 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Nonconvex quartic minimization

Define f(x) = x4 − 50x2 + 100x (nonconvex), minimize subject to
constraint x ≥ −4.5
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Dual function g can be derived explicitly (via closed-form equation
for roots of a cubic equation). Form of g is quite complicated, and
would be hard to tell whether or not g is concave ... but it must be!
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Strong duality

Recall that we always have f? ≥ g? (weak duality). On the other
hand, in some problems we have observed that actually

f? = g?

which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
h1, . . . hm are convex, `1, . . . `r are affine), and there exists at least
one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0

then strong duality holds

This is a pretty weak condition. (And it can be further refined:
need strict inequalities only over functions hi that are not affine)
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Back to where we started

For linear programs:

• Easy to check that the dual of the dual LP is the primal LP

• Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

• Apply same logic to its dual LP: strong duality holds if it is
feasible

• Hence strong duality holds for LPs, except when both primal
and dual are infeasible

In other words, we pretty much always have strong duality for LPs
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Mixed strategies for matrix games

Setup: two players, vs. , and a payout matrix P

R

B

1 2 . . . n
1 P11 P12 . . . P1n

2 P21 P22 . . . P2n

. . .
m Pm1 Pm2 . . . Pmn

Game: if B chooses i and
R chooses j, then B must
pay R amount Pij (don’t
feel bad for B—this can be
positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x : P(B chooses i) = xi, i = 1, . . .m

y : P(R chooses j) = yj , j = 1, . . . n
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The expected payout then, from B to R, is

m∑
i=1

n∑
j=1

xiyjPij = xTPy

Now suppose that, because B is wiser, he will allow R to know his
strategy x ahead of time. In this case, R will definitely choose y to
maximize xTPy, which results in B paying off

max {xTPy : y ≥ 0, 1T y = 1} = max
i=1,...n

(P Tx)i

B’s best strategy is then to choose his distribution x according to

min
x∈Rm

max
i=1,...n

(P Tx)i

subject to x ≥ 0, 1Tx = 1
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In an alternate universe, if R were somehow wiser than B, then he
might allow B to know his strategy y beforehand

By the same logic, R’s best strategy is to choose his distribution y
according to

max
y∈Rn

min
j=1,...m

(Py)j

subject to y ≥ 0, 1T y = 1

Call B’s expected payout in first scenario f?1 , and expected payout
in second scenario f?2 . Because it is clearly advantageous to know
the other player’s strategy, f?1 ≥ f?2

We can show using strong duality that f?1 = f?2 ... which may
come as a surprise!

30



Recast first problem as an LP

min
x∈Rm, t∈R

t

subject to x ≥ 0, 1Tx = 1

P Tx ≤ t

Lagrangian and Lagrange dual function

L(x, u, v, y) = t− uTx+ v(1− 1Tx) + yT (P Tx− t)

g(u, v, y) =

{
v if 1− 1T y = 0, Py − u− v = 0

−∞ otherwise

Hence dual problem is

max
u∈Rm, t∈R

v

subject to y ≥ 0, 1T y = 1

Py ≥ v

This is exactly the second problem, and we have strong LP duality
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