Convex Optimization CMU-10725

Penalty Methods

Barnabás Póczos & Ryan Tibshirani

Outline

□ Penalty functions

Books to Read

David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming

Boyd and Vandenberghe: Convex Optimization

Penalty Methods

Penalty Methods

$$\min_{x \in \mathcal{S}} f(x), \qquad (P)$$

where $f:\mathbb{R}^n \to \mathbb{R}$ is continuous, and $\mathcal S$ is a constraint set in \mathbb{R}^n

Penalty program: replace (P) with the unconstrained problem:

$$\min f(x) + cp(x)$$

where c > 0

Penalty $p: \mathbb{R}^n \to \mathbb{R}$:

- (i) p is continuous,
- (ii) $p(x) \geq 0$ for all $x \in \mathbb{R}^n$,
- (iii) p(x) = 0 if and only if $x \in \mathcal{S}$

Penalty term: high cost for violation of the constraints

Inequality Constraints

$$\min_{x \in \mathcal{S}} f(x)$$
 $\mathcal{S} = \{x : g_i(x) \le 0, i = 1, 2, ..., p\}$

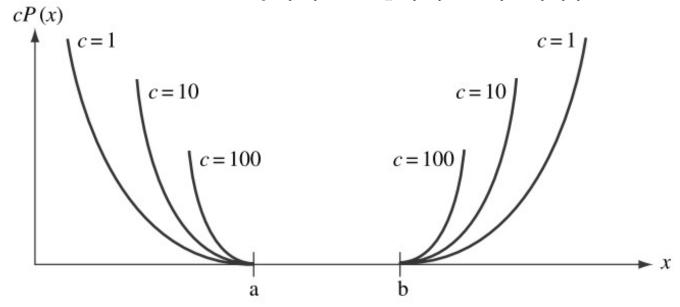
A useful penalty function in this case is:

$$P(x) = \frac{1}{2} \sum_{i=1}^{p} (\max[0, g_i(x)])^2$$
 [No penaltiy, iff $g(x) \le 0$]

Example:
$$g_1(x) = x - b$$
, $g_2(x) = x - a$ $a \le x$, $x \le b$

Penalty Methods

Penalty program: min f(x) + cp(x) (P(c))



For large c the minimum point of problem (P(c)) is in a region where penalty p is small.

We will prove: as $c \to \infty$ the solution point of the penalty problem will converge to a solution of the constrained problem (P).

Inequality and Equality Constraints

Inequality and Equality constraints:

MIN
$$f(x)$$

X
SUBJECT TO $g(x) \neq 0$ $i = 1...m$
 $f(x) \neq 0$ $f(x) \neq 0$ $f(x) \neq 0$ $f(x) \neq 0$ $f(x) \neq 0$

Rewrite them as:

Penalty Method

Penalty parameter:

Penalty program:

$$\varphi(c,x) \doteq f(x) + c \varphi(x)
\chi_{k} = ARGMIN \varphi(c_{k},x) = ARGMIN f(x) + C_{k} \varphi(x)
\chi \in \mathbb{R}^{n}$$

Penalty Lemma:

$$\frac{1}{4} \left(\frac{1}{x^*} \right) > 9(C_{R}, x_{R}) > f(x_{R})$$

Proof of Penalty Lemma (1)

Proof of Penalty Lemma (2)

① PROVE
$$P(X_{k}) > P(X_{k+1})$$

PROOF:

 $f(X_{k}) + C_{k}P(X_{k}) \leq f(X_{k+1}) + C_{k}P(X_{k+1})$ (X1)

 $f(X_{k}) + C_{k}P(X_{k}) \leq f(X_{k+1}) + C_{k}P(X_{k+1})$ (X2)

 $f(X_{k+1}) + C_{k+1}P(X_{k+1}) \leq f(X_{k}) + C_{k+1}P(X_{k})$
 $f(X_{k+1}) + C_{k+1}P(X_{k+1}) \leq f(X_{k}) + C_{k+1}P(X_{k})$
 $f(X_{k}) + (X_{k}) = f(X_{k}) + C_{k}P(X_{k+1}) + C_{k+1}P(X_{k})$
 $f(X_{k}) + (X_{k}) = f(X_{k}) + C_{k}P(X_{k+1}) + C_{k}P(X_{k})$
 $f(X_{k}) + (X_{k}) = f(X_{k}) + C_{k}P(X_{k}) + C_{k}P(X_{k})$
 $f(X_{k}) + (X_{k}) = f(X_{k}) + C_{k}P(X_{k})$
 $f(X_{k}) + (X_{k}) = f(X_{k})$

Proof of Penalty Lemma (3)

PROVE
$$f(X_{Q}) \leq f(X_{Q+1})$$

PROOF:
$$f(X_{Q+1}) + C_{Q} P(X_{Q+1}) > f(X_{Q}) + C_{Q} P(X_{Q})$$

$$X_{Q} 15 OPTIMAL WITH CQ$$

$$> f(X_{Q}) + C_{Q} P(X_{Q+1})$$

$$p(X_{Q}) > P(X_{Q+1})$$

$$=) f(X_{Q}+1) > f(X_{Q}) \qquad f$$

Proof of Penalty Lemma (4)

LET
$$x^* = ARGMIN f(x)$$
 $x \in S$

PROVE THAT

$$f(x^*) \supset O((C_{Q+1}, X_{Q+1})) \supseteq O((C_{Q}, X_{Q})) \supseteq f(X_{Q}) \ \forall g$$

WHERE $O(C, x) = f(x) + CP(x)$
 $X_{Q+1} = ARGMIN f(x) + C_{Q} P(x)$

PROOF

$$f(x^*) = f(x^*) + C_{Q} P(x^*) \supseteq f(X_{Q}) + C_{Q} P(X_{Q}) \supseteq f(X_{Q})$$
 $O(S_1)NCEX^* \in S$
 $O(S_1)NCEX^* \in S$

Convergence of Penalty Method

Theorem: [Penalty convergence]

- · SUPPOSE f, 9, P ART CONTINOUS FUNCTIONS
- · Xu = ARG MIN f(x) + Ce P(x) F PENAUTY FUNCTION
 XER
- · 0< 0, < 02<... < 02< Ca+1<... > 0
- · X 19 AN ARBITRARY LIMIT POINT OF {X2} =1

$$(P) \begin{cases} MIN & f(x) \\ x & g(x) \leq 0 \end{cases}$$

Proof of Penalty Convergence

LIMIT POINT: LIM
$$X_{\infty} \le \overline{X}$$
 $[X_{\infty} \to \overline{X}]$

SINCE f IS CONTINUOUS LIM $f(X_{\infty}) = f(\overline{X})$

Q*= LIM $OY(Ce_{\lambda}, X_{\infty}) \le f(X^{*}) = f^{*}$ X^{∞} : SOLUTION OF P)

 $f(X_{\infty}) + Ce_{\lambda} P(X_{\infty})$ LEMMA (4)

$$f(X_{\infty}) + Ce_{\lambda} P(X_{\infty}) \le f(X^{*}) = f(\overline{X}) \le f(X^{*})$$

$$f(X_{\infty}) + Ce_{\lambda} P(X_{\infty}) \le f(X^{*}) = f(\overline{X}) \le f(X^{*})$$

$$f(X_{\infty}) + Ce_{\lambda} P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM Ce_{\lambda} P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM Ce_{\lambda} P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM Ce_{\lambda} P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = \int_{\mathbb{R}^{n}} LIM P(X_{\infty}) = 0$$

$$f(X_{\infty}) + \int_{\mathbb{R}^{n}} LIM P(X_{\infty})$$

Penalty functions

Often used penalty functions

Polynomial penalty:
$$P(x) = \sum_{i=1}^{\infty} [\max_{x \in O}, g_i(x)]$$
 $q > 1$
Linear penalty: $q = 1$: $P(x) = \sum_{i=1}^{\infty} \max_{x \in O} \{0, g_i(x)\}$
Quadratic penalty: $q = 2$: $P(x) = \sum_{i=1}^{\infty} \max_{x \in O} \{0, g_i(x)\}$
 $g_i^+(x) = \max_{x \in O} \{0, g_i(x)\}$
 $g_i^+(x) = \max_{x \in O} \{0, g_i(x)\}$
 $g_i^+(x) = [g_i^+(x), ..., g_m^+(x)]$
 $g_i^+(x) = [g_i^+(x), ..., g_m^+(x)]$

Inequality and Equality constraints

Problem (P)

P: MIN
$$f(x)$$

X

S.T. $g(x) \leq C$
 $R(x) = 0$
 $x \in \mathbb{R}^n$

Definition [Penalty function]

$$P(x) = C$$
 IF $g(x) \in C$ AND $h(x) = C$
 $P(x) > C$ IF $g(x) > C$ OR $h(x) \neq C$

Example [Penalty function]

Penalty function]
$$\rho(x) = \sum_{i=1}^{\infty} \left[MAX \left\{ 0, 9_{\lambda}(x) \right\} \right]^{q} + \sum_{i=1}^{q} \left| \mathcal{K}_{\lambda}(x) \right|^{q}$$

Derivative of the penalty function

Penalty program:
$$\chi_{\ell} = \underset{\chi \in \mathcal{R}^{\cap}}{\text{ARGMIN}} f(\chi) + C_{\ell} P(\chi)$$

Penalty function:

$$g_{i}^{\dagger}(x) = \prod_{x \neq i} (x) g_{i}(x)$$

$$g_{i}^{\dagger}(x) = \left[g_{i}^{\dagger}(x), \dots g_{m}^{\dagger}(x)\right]^{T}$$

$$g_{i}$$

Assumptions:

$$f \in C'$$
 objective
 $g \in C'$ constraints
 $g \in C'$ $g^{\dagger}(\cdot) \in C'$ PENALTY FUNCTION

Derivatives:

Derivative of the penalty function

Difficulties: max is not differentiable

$$\frac{\partial P(x)}{\partial x} = \sum_{i=1}^{\infty} \frac{\partial \gamma(y^{+}(x))}{\partial \gamma_{i}} \left(\frac{\partial y^{+}_{i}(x)}{\partial x} \right)$$

$$\nabla g_{i}(x) = \frac{\partial g_{i}(x)}{\partial x} = \frac{\partial g_{i}(x)}{\partial$$

This is not perfectly correct, because

Solution:

$$|F | \gamma_{i} = 0 \Rightarrow \frac{\partial \gamma(\gamma)}{\partial \gamma_{i}} = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{THEN } P(x) \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{15 STILL} \\ |\gamma_{+}^{+}(x)| = 0 \quad \text{15 STILL} \\ |\gamma_{$$

Example:
$$\rho(x) = \sum_{i=1}^{\infty} \left[g_i^{+}(x) \right]^{\gamma}$$

$$\frac{\partial P(x)}{\partial x} = \sum_{i=1}^{\infty} \sqrt{\left[g_{i}^{+}(x)\right]^{q-1}} \frac{\partial g_{i}^{+}(x)}{\partial x}$$

KKT in Penalty methods

Penalty program:
$$\chi_{k} = \triangle RGMIN f(x) + C_{k} P(x)$$

 $\chi \in \mathbb{R}^{n}$

Penalty function:
$$P(x) = \mathcal{T}(g^{+}(x))$$

Derivatives:
$$\nabla P(x) = \sum_{i=1}^{\infty} \frac{\partial f(g^{+}(x))}{\partial y_{i}} \nabla g_{i}(x) = \sum_{i=1}^{\infty} \frac{\partial f(g^{+}(x))}{\partial y_{i}} \nabla g_{i}(x)$$

NO NEED FOR $\forall g_{i}^{+}(x)$

1st order condition in local minimum:
$$0 = \nabla f(X_{0}) + C_{0} \nabla f(X_{0})$$

$$= \nabla f(X_{0}) + C_{0} \sum_{i=1}^{\infty} \frac{\partial f(g^{+}(X_{0}))}{\partial f_{i}} \nabla g_{i}(X_{0})$$

$$= \nabla f(X_{0}) + U_{i} \nabla g_{i}(X_{0}) = 0 \quad \text{LAGRANGE MULTIPLIERS IN } KKT!$$

$$= \nabla f(X_{0}) + U_{i} \nabla g_{i}(X_{0}) = 0 \quad \text{LAGRANGE MULTIPLIERS IN } KKT!$$

KKT and Penalty method multipliers

Problem (P)

Penalty program:

$$x_2 = ARGMIN f(x) + C_2 P(x)$$

 $x \in \mathbb{R}^n$

$$u_{i}^{2} = c_{2} \frac{\partial T(q^{+}(x_{2}))}{\partial y_{i}}$$

$$\nabla f(x_{2}) + (U^{2})^{T} \nabla g(x_{2}) = 0$$

KKT multipliers: U* IN A LOCAL OPT SOLUTION X* OF (P)

Theorem: Under some mild conditions $IF \times_{\mathfrak{L}} \rightarrow X^* \Rightarrow U^*$