Convex Optimization CMU-10725

Penalty Methods

Barnabás Póczos & Ryan Tibshirani

Outline

□ Penalty functions

Books to Read

David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming

Boyd and Vandenberghe: Convex Optimization

Penalty Methods

Penalty Methods

$$\min_{x \in \mathcal{S}} f(x), \qquad (P)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, and \mathcal{S} is a constraint set in \mathbb{R}^n

Penalty program: replace (P) with the unconstrained problem:

$$\min f(x) + \underline{cp(x)}$$

where c > 0

Penalty $p: \mathbb{R}^n \to \mathbb{R}$:

- (i) p is continuous,
- (ii) $p(x) \geq 0$ for all $x \in \mathbb{R}^n$,
- (iii) p(x) = 0 if and only if $x \in \mathcal{S}$

Penalty term: high cost for violation of the constraints

Inequality Constraints

$$\min_{x \in \mathcal{S}} f(x)$$
 $\mathcal{S} = \{x : g_i(x) \le 0, i = 1, 2, ..., p\}$

A useful penalty function in this case is:

$$P(x) = \frac{1}{2} \sum_{i=1}^{p} (\max[0, g_i(x)])^2$$
 [No penalty, iff $g(x) \le 0$]

Example:
$$g_1(x) = x - b$$
, $g_2(x) = a - x$ $a \le x$, $x \le b$

$$0 \le X \le U$$

$$9_1(x) = X - 0$$

$$9_1(x) = 0 - X$$

Penalty Methods

Penalty program: $\min f(x) + cp(x)$ cP(x)

For large c the minimum point of problem (P(c)) is in a region where penalty p is small.

We will prove: as $c \to \infty$ the solution point of the penalty problem will converge to a solution of the constrained problem (P).

Inequality and Equality Constraints

Inequality and Equality constraints:

MIN
$$f(x)$$

ST $g_i(x) = 0$ $i=1...$ k
thomas:

Rewrite them as:

Them as:
$$\rho(x) = \rho_0(x) + \sum_{i=1}^{n} h_i(x) \int_{-\infty}^{\infty} (x^2 + x^2) dx$$

$$- k_i(x) = 0$$

$$- k_i(x) = 0$$

Penalty Method

Penalty parameter:

Penalty program:

$$Q(C, x) = f(x) + CP(x)$$

 $XQ = ARGMIN Q(CQ, X) = ARGMIN (x) + CQP(x)$
 $XQ = ARGMIN X (FR)$

Penalty Lemma:

Proof of Penalty Lemma (1)

$$9(Cu, Xer) \in 9(Cuti, Xeti)$$
 $\frac{PROOF}{9(Cuti, Xati)} = f(Xeri) + Cati P(Xeti)$
 $\Rightarrow f(Xeri) + Cee P(Xeri)$
 $\Rightarrow f(Xeri) + Cee P(Xeri)$
 $\Rightarrow f(Xeri) + Cee P(Xeri)$
 $\Rightarrow f(Xeri) + Cee P(Xeri)$

Proof of Penalty Lemma (2)

[
$$P(Xa) > P(Xe+1)$$

• $f(Xa) + Ce_1 P(Xa) & f(Xe_1) + Ce_2 P(Xe_1)$

• $f(Xe_1) + Ce_1 P(Xe_1) & f(Xe_1) + Ce_1 P(Xe_2)$

• $f(Xe_1) + Ce_1 P(Xe_1) & Ce_1 P(Xe_1) + Ce_1 P(Xe_2)$

• $Ce_1 P(Xe_1) + Ce_1 P(Xe_1) & Ce_2 P(Xe_1) + Ce_1 P(Xe_2)$

• $Ce_1 P(Xe_1) + Ce_1 P(Xe_1) & Ce_2 P(Xe_2)$

• $P(Xe_1) & P(Xe_1) & Ce_2 P(Xe_2)$

• $P(Xe_1) & P(Xe_2) & Q.E.D.$

Proof of Penalty Lemma (3)

$$f(Xa) \leq f(Xh+1)$$

$$PROOF$$

$$f(Xa+1) + Cer P(Xa+1) > f(Xa) + Cer P(Xa)$$

$$\geq f(Xa) + Cer P(Xa+1)$$

Proof of Penalty Lemma (4)

$$x^{*}$$
: ARGMIN $f(x)$ provt:
 $x \in S$

$$f(x^{*}) > or(Ceri, xeri) > or(ca, xer) > f(xer) + Cer P(xer)$$

$$f(x^{*}) = f(x^{*}) + Cer P(x^{*}) > f(xer) + Cer P(xer)$$

$$x^{*} \in S$$

$$> f(xer)$$

$$> f(xer)$$

Convergence of Penalty Method

Theorem: [Penalty convergence]

- · SUPPOSE fig, P CONTINUOUS
- · Xg = ARGHIN f(x) + Ch P(x)
- · 02 C12 C2 2... 2 Ced.
- X 15 AN ARBITRARY LIMIT POINT OF {X2}

5.T. B(x) 60

Proof of Penalty Convergence

Penalty functions

Often used penalty functions

Polynomial penalty:
$$P(x) = \sum_{i=1}^{\infty} \{ \max_{x \in O}(0, g_i(x)) \}^{\alpha}$$
 $q > 1$
Linear penalty: $q = 1$: $P(x) = \sum_{i=1}^{\infty} \max_{x \in O}(0, g_i(x))$
Quadratic penalty: $q = 2$: $P(x) = \sum_{i=1}^{\infty} \max_{x \in O}(0, g_i(x))$
 $g_i^+(x) = \max_{x \in O}(0, g_i(x))$
 $g_i^+(x) = \sum_{i=1}^{\infty} \max_{x \in O}(0, g_i(x))$
 $g_i^+(x) = g_i^+(x)$
 $g_i^+(x) = g_i^+(x)$

Inequality and Equality constraints

Problem (P)

P: MIN
$$f(x)$$

X

S.T. $g(x) \leq C$
 $R(x) = 0$
 $x \in \mathbb{R}^n$

Definition [Penalty function]

$$P(x) = C$$
 IF $g(x) \in C$ AND $h(x) = C$
 $P(x) > C$ IF $g(x) > C$ OR $h(x) \neq C$

Example [Penalty function]

Penalty function]
$$\rho(x) = \sum_{i=1}^{\infty} \left[MAX \{ 0, 9_{\lambda}(x) \} \right]^{q} + \sum_{i=1}^{q} |\mathcal{H}_{\lambda}(x)|^{q}$$

Derivative of the penalty function

Penalty program:
$$\chi_{q} = ARGMIN f(x) + C4P(x)$$

$$g_{t} = MAX SO, g_{t}(x)$$

 $g^{+}(x) = [g_{t}(x)...g_{r}(x)]$
 $P(x) = T(g^{+}(x)) T(y) = 6^{-4}y$

Assumptions:
$$f \in C'$$
 $g \in C'$
 $f(\cdot) = f(g^{\dagger}(\cdot)) \in C'$

Derivatives: $g \neq G'$
 $g \neq G'$

Derivative of the penalty function

Difficulties: max is not differentiable

This is not perfectly correct, because
$$\nabla 3^{\dagger} \times \nabla 3^{$$

This is not perfectly correct, because

KKT in Penalty methods

Penalty program:
$$X_{Q} = ARGM)N f(x) + CQP(x)$$

Penalty function: $P(x) = F(y) = F(y)$

Derivatives: $P(x) = F(y) = F(y)$

1st order condition in local minimum: $P(x) = P(x)$
 $P(x) =$

KKT and Penalty method multipliers

Problem (P)

Penalty program:

$$x_2 = ARGMIN f(x) + C_2 P(x)$$

 $x \in \mathbb{R}^n$

$$u_{i}^{2} = C_{2} \frac{\partial T(q^{+}(x_{2}))}{\partial y_{i}}$$

$$\nabla f(x_{2}) + (U^{2})^{T} \nabla g(x_{2}) = 0$$

KKT multipliers: U* IN A LOCAL OPT SOLUTION X* OF (P)

Theorem: Under some mild conditions $IF \times_{\mathfrak{L}} \rightarrow X^* \Rightarrow U^*$