Convex Optimization CMU-10725

Barrier Methods

Barnabás Póczos & Ryan Tibshirani

Barrier Methods (Interior methods)

Barrier Methods

$$\min_{x \in \mathcal{S}} f(x), \qquad (P)$$

where $f:\mathbb{R}^n \to \mathbb{R}$ is continuous, and $\mathcal S$ is a constraint set in \mathbb{R}^n

Barrier program: replace (P) with the unconstrained problem (B(c)):

$$\operatorname{where}\ c>0 \\ \min f(x) + \frac{1}{c}B(x)$$

Barrier function $B: \mathbb{R}^n \to \mathbb{R}$:

- (i) B is continuous,
- (ii) $B(x) \ge 0$ for all $x \in int(S)$
- (iii) $B(x) \to \infty$ as $x \to \partial S$

Barrier term: we don't let the algorithm leave S [Interior method]

Inequality Constraints

$$\min_{x \in \mathcal{S}} f(x)$$
 $\mathcal{S} = \{x : g_i(x) \le 0, i = 1, 2, ..., p\}$

Example:
$$g_1(x) = x - b$$
, $g_2(x) = a - x$

A useful barrier function in this case is:

$$B(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)}$$

Barrier program (B(c)):

$$\min f(x) + \frac{1}{c}B(x)$$

Logarithmic Barrier function

Problem: (P)

$$\min_{x \in \mathcal{S}} f(x)$$
 $\mathcal{S} = \{x : g_i(x) \le 0, i = 1, 2, ..., m\}$

Definition: Logarithmic barrier function

$$m(x) = -\sum_{i=1}^{\infty} Loc(-g_i(x))$$

Barrier method:

Ther method:

$$O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_2 < C_{2+1} < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_2 < C_2 < C_2 < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < C_2 < ... < C_2 < C_2 < C_2 < ... > D$
 $O \subseteq C_1 < C_2 < ... < C_2 < ... < C_2 < ... < C_2 < ... > D$
 $O \subseteq C_1 < C_2 < ... > D$
 $O \subseteq C_1 < C_2 < ... > D$
 $O \subseteq C_1 < C_2 < ... > D$
 $O \subseteq C_1 < ... < C_2 < ... < C_$

B(c) is still a constrained problem and looks more complicated than (P)

Advantage: B(c) can be solved with unconstrained optimization tools

Barrier Method

Penalty parameter:

Barrier program:

$$B(C_2)$$
: $X_2 = ARGMIN f(X_2) + \frac{1}{C_2} B(X_2)$

$$T(C_2) \times T(C_2)$$

Barrier Lemma:

$$(2) \mathcal{B}(X_n) \leq \mathcal{B}(X_{n+1})$$

$$(4) + (x^*) \leq f(x_{2+1}) \leq f(x_n) \leq \Upsilon(C_2, x_n)$$

Proof of Barrier Lemma (1)

PROVE:
$$T(Ce_{2}, Xe_{2}) > T(Ce_{2+1}, Xe_{2+1})$$

PROOF:
$$T(Ce_{1}, Xe_{2}) \doteq f(Xe_{2}) + \frac{1}{Ce_{2}} \frac{B(Xe_{1})}{r} > f(Xe_{2}) + \frac{1}{Ce_{2+1}} \frac{B(Xe_{2})}{r} + \frac{Ce_{2+1}}{Ce_{2+1}}$$

$$Ce_{2} < Ce_{2+1}$$

$$> f(Xe_{1}) + \frac{1}{Ce_{2+1}} \frac{B(Xe_{1})}{r} = T(Ce_{1}, Xe_{1})$$

$$Xe_{1} = Ce_{2} < Ce_{1}$$

$$Xe_{1} = Ce_{2} < Ce_{1}$$

$$Xe_{2} = Ce_{2} < Ce_{1}$$

Proof of Barrier Lemma (2)

PROOF:

$$(X) \in \mathcal{B}(X) \subseteq \mathcal{B}(X) \subseteq \mathcal{B}(X)$$
 $(X) = \mathcal{B}(X) \subseteq \mathcal{B}(X) \subseteq \mathcal{B}(X) \subseteq \mathcal{B}(X) = \mathcal{B}(X)$
 $(X) = \mathcal{B}(X) = \mathcal{B}(X) \subseteq \mathcal{B}(X) = \mathcal{B}(X) = \mathcal{B}(X)$
 $(X) = \mathcal{B}(X) =$

Proof of Barrier Lemma (3)

PROUF
$$f(X_{2}) > f(X_{2+1})$$

$$p(X_{2}) + \frac{1}{C_{2+1}}B(X_{2}) > f(X_{2}) + \frac{1}{C_{2+1}}B(X_{2}) > f(X_{2}) + \frac{1}{C_{2+1}}B(X_{2}) + \frac{1}{C_{2+1}}B(X_{2}) + \frac{1}{C_{2+1}}B(X_{2}) + \frac{1}{C_{2+1}}B(X_{2})$$

$$= f(X_{2}) > f(X_{2})$$

$$= f(X_{2}) > f(X_{2})$$

Proof of Barrier Lemma (4)

PROVE
$$f(x^*) \leq f(x_{e+1}) \leq f(x_e) \leq r(C_{e}, x_e)$$

$$CEMMA(3)$$

$$PROOF:$$

$$f(x_*) \leq f(x_e) \leq f(x_e) + \frac{1}{C_{e}}B(x_e) \stackrel{.}{=} r(C_{e}, x_e)$$

$$x^* is crimal in 5 %
$$x_e \in S$$$$

Primal Logarithmic Barrier Method for LP

Primal problem

P MIN CTX =
$$Z$$
 XER $X \in \mathbb{R}^n$

6 13 UF CT TO $Z \in \mathbb{R}^n$

Log barrier problem

 $Z \in \mathbb{R}^n$
 $Z \in \mathbb{R}^n$
 $Z \in \mathbb{R}^n$

Log barrier problem

$$P(p) = C^{T}X - M \stackrel{\frown}{\underset{j=1}{\sum}} log(X_{j})$$

$$X \in \mathbb{R}^{n}$$

$$S. 7. \quad \Delta X \stackrel{\frown}{\underset{j=1}{\sum}} V$$

$$X > 0$$

Derivatives:
$$q(x) = \nabla f(x) = C - MO_x^{-1}e \text{ where } O_x = \text{DIAG}(x)$$

$$G(x) = \nabla^2 f(x) = MO_x^{-2} \quad \text{POS DEFINITE}$$

$$SINCE x > 0$$

Feasible solution of the log barrier problem

FIND A BETTER SOLUTION X+=X+AX

Quadratic approximation of f
$$ATX$$
:
$$f(x) \approx f(\bar{x}) + \nabla f(\bar{x})^{T}(x-\bar{x}) + \frac{1}{2} (x-\bar{x}) \nabla^{2} f(\bar{x})(x-\bar{x})$$

$$g(x)^{T} \Delta x \qquad \Delta x \qquad G(\bar{x}) \Delta x$$

$$= f(\bar{x}) + g(x)^{T} \Delta x + \frac{1}{2} \Delta x^{T} G(\bar{x}) \Delta x$$

$$Q(\Delta x) \quad QVADRATIC \quad APPROXIMATION$$

New quadratic problem:

MIN
$$Q(\Delta X)$$

S.T. $A(\overline{X} + \Delta X) = C$

MIN $Q(\Delta X)$

MIN $Q(\Delta X)$

MIN $Q(\Delta X)$

S.T. $A(\Delta X) = C$

S.T. $A(\Delta X) = C$

S.T. $A(\Delta X) = C$

SINCE $A(X) = C$

Lagrange problem:

$$L(X, \mathcal{I}(X)) = 9(\hat{X})^{T} \Delta X + \frac{1}{2} \Delta X^{T} G(\hat{X}) \Delta X - \mathcal{I}_{X}^{T} [\Delta \Delta X]$$

Lagrange problem:

$$L(X, \pi X) = 8(x)^{T} \Delta X + \frac{1}{2} \Delta X^{T} G(x) \Delta X - \pi_{X}^{T} [\Delta \Delta^{X}]$$

In the optimum:

In the optimum:
$$0 = \frac{\partial L(X_1 \pi_x)}{\partial \Delta X} = g(\overline{X}) + G(\overline{X}) \Delta X - A^{T} \pi_{X}$$

$$C - M D_{X}^{-1} e + M D_{X}^{-2} \Delta X - A^{T} \pi_{X}$$

$$\Rightarrow (M D_{X}^{-2} A^{T}) (-\Delta X) = (C - M D_{X}^{-1} e) \Delta X$$

$$R^{(n+m) \times (n+m)}$$

$$R^{m}$$

Interior-point algorithm

MIN
$$f(x) = C^Tx - M \sum_{j=1}^{n} log(x_j) \implies X^{*}(M)$$

**S.T. $\triangle x = U$

**IN C^Tx

S.T $Ax \leq U$

**CONTOUR LINES

WITH $N=2$
 $m=6$
 x^{*}
 x^{*}

Primal - Dual Logarithmic Barrier Method for LP

Symmetric Primal and Dual Forms

Symmetric form I [wikipedia]

Symmetric form II [Luenberger & Ye]

(P) MIN
$$C^{T}X$$

S.T. $AX > C$
 $X > C$

Asymmetric Primal and Dual Forms

Asymmetric form I [Jensen & Jonathan]

Duality gap:

Asymmetric form II [Luenberger & Ye, R. Freund] カイム + ら = C らう

$$(\rho) \quad MIN \quad C^{\dagger}X \\ 5.7 \quad \Delta X = 0. \\ \times 7.0$$

In what follows, we will use this form.

Duality gap:

ws, we will use this form.

$$C^{T}X - \omega^{T}y = \gamma^{T}A^{X} + S^{T}X - \lambda^{T}A^{T}y = S^{T}X > 0$$

KKT conditions

Log barrier problem [We already know this]

$$P(M) \qquad \text{MIN } f(x) = C^{T}x - M \mathcal{E} \log (X_{j})$$

$$x \in \mathbb{R}^{n}$$

$$5.7. \quad \Delta x = 0$$

$$x > 0$$

$$x > 0$$
Derivatives:
$$q(x) = \nabla f(x) = C - MO_{x}^{-1}e \quad \text{where} \quad O_{x} = 0 \text{ in } G(x)$$

$$e = (1, ..., 1)^{T}$$

KKT stationarity condition of the log barrier problem

$$\nabla_{x}f(x) + \nabla_{x}\nabla_{x}(x) = 0$$

$$(C-M)\nabla_{x}^{2}e^{-1}$$

$$(C-M)\nabla_{x}^{2}e^{-1}$$

$$(C-M)\nabla_{x}^{2}e^{-1}$$

$$(C-M)\nabla_{x}^{2}e^{-1}$$

$$(C-M)\nabla_{x}^{2}e^{-1}$$

Stationarity Condition Rewritten

The stationarity condition can be rewritten

$$C-MD_{x}^{-1}e = A^{T}M$$

$$= MD_{x}^{-1}e = 5$$

$$= MD_{x}^{-1}e = 6$$

$$= MD_{x}^{-1}e = 6$$

$$= MD_{x}^{-1}D_{x}^{-1}e = 6$$

$$= MD_{x}^{-1}D_{x}^{-1}e = 6$$

$$= MD_{x}^{-1}D_{x}^{-1}e = 6$$

$$= MD_{x}^{-1}D_{x}^{-1}e = 6$$

KKT Conditions

KKT Conditions
$$A_{X} = (r \cdot X) = 0$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

$$A^{T} + S = C \cdot S > C$$

Lemma

If
$$(X, M, S)$$
 is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a solution of $(*KKT)$

If (X, M, S) is a sol

Approximation of the KKT conditions

(a)
$$Ax = (r, X) = 0$$

(b) $A^{T}xy + S = C$
 $L D_{X} D_{S} e = e$
 M

This is not linear in x and s!

β -approximation of the stationarity condition:

Duality Gap of beta approximation

Lemma: [duality gap after β -approximation]

Lemma: [utuality gap after prapproximation]

$$Ax = 4, X>0$$

$$ATy + 5 = C,$$

$$WE DON'T REQUIRE 5>0.$$

$$WE DON'T REQUIRE 5>0.$$

$$WE DON'T REQUIRE 5>0.$$

$$WE DON'T REQUIRE 6>0.$$

$$WE DON'T REQUIRE 6>0.

$$WE DON'T REQUIRE 6>0.

$$WE DON'T REQUIRE 6>0.$$$$$$$$$$$$$$$$

Duality Gap of beta approximation

Proof:

Primal-Dual Newton Step

Current iterate:

After update:
$$\triangle(\overline{x} + \Delta x) = \emptyset$$
, $\overline{x} + \Delta^{\chi} > 0$

$$A(X+\Delta X) = 0, X+D \times 30$$

$$AT(M+\Delta y) + (S+\Delta S) = C$$

$$L(D_{\overline{x}} + D_{\Delta x})(D_{\overline{5}} + D_{\Delta S}) \cdot e - e = 0$$

$$L(D_{\overline{x}} + D_{\Delta x})(D_{\overline{5}} + D_{\Delta S}) \cdot e - e = 0$$

Newton steps:

$$A \Delta X = 0$$

$$A^{T} \Delta y + \Delta S = 0$$

$$D_{x} D_{\Delta S} e^{+} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{\Delta S} e^{+} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{\Delta S} e^{+} D_{z} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{\Delta S} e^{+} D_{z} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{z} e^{+} D_{z} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{z} e^{+} D_{z} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{z} e^{+} D_{z} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-} D_{x} D_{z} e^{-}$$

$$D_{x} D_{z} e^{+} D_{z} D_{z} e^{-} D_{x} D_{x} D_{x} D_{x} e^{-} D_{x} D_$$

Primal-Dual Newton System

Primal-Dual Newton System

The Primal Dual Algorithm

STEP 0. INITIALIZATION

$$(X^0, 5^0, 5^0)$$
 FFASIBLE SOLUTION

STEP 1. $(\bar{X}, \bar{b}, \bar{5}) = (X^k, J^k, S^k)$

STEP 2. NEWTON STEP

 $A\Delta X = 0$
 $A\Delta X = 0$
 $A\Delta X + D_{\bar{x}} \Delta S = Me - D_{\bar{x}} O_{\bar{5}} e$
 $O_{\bar{5}} \Delta X + D_{\bar{x}} \Delta S = Me - D_{\bar{x}} O_{\bar{5}} e$

STEP 3. $X^{k+1} = \bar{X} + \Delta X$
 $D_{\bar{x}} + D_{\bar{x}} + D_{\bar{x}} D = 0$
 $C^{k+1} = \bar{S} + \Delta S$
 $C^{k+1} = \bar{$

Quadratic Convergence

Theorem [Local quadratic convergence of Primal-Dual Newton's method]:

• SUPPOSE THAT
$$(\bar{x}, \bar{\eta}, \bar{s})$$
 IS A p -APPROXIMATE SOLUTION OF $P(M)$ for gome $P(M)$ for $P(M)$ for $P(M)$ for $P(M)$ of $P(M)$

Summary

- ☐ Penalty functions
- Barrier functions
- ☐ Primal log barrier method for LP
- ☐ Primal-Dual log barrier method for LP