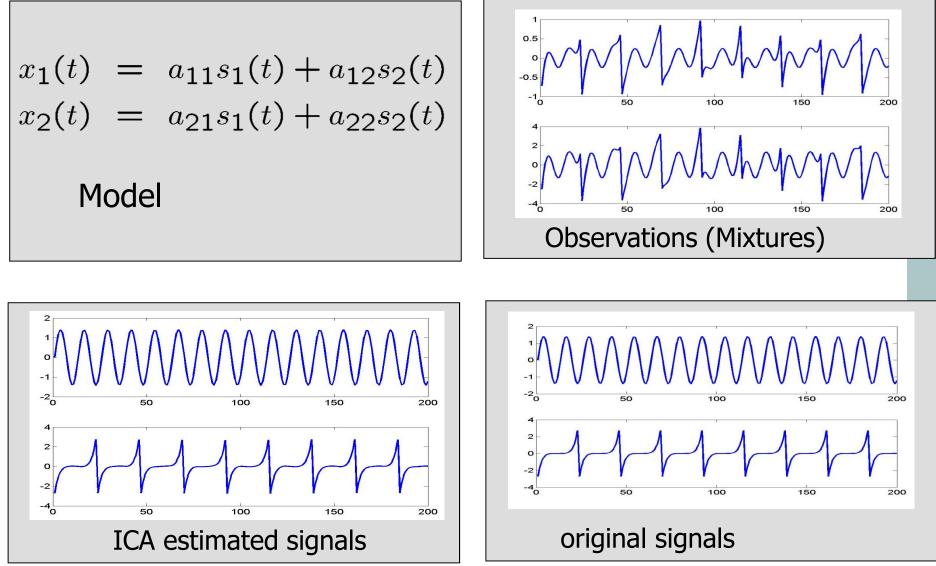
Convex Optimization CMU-10725

Independent Component Analysis (and matrix differentials)

Barnabás Póczos & Ryan Tibshirani

Independent Component Analysis

Independent Component Analysis



Independent Component Analysys

Model

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

$$x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$$

We observe

$$\begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}, \begin{pmatrix} x_1(2) \\ x_2(2) \end{pmatrix}, \dots, \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

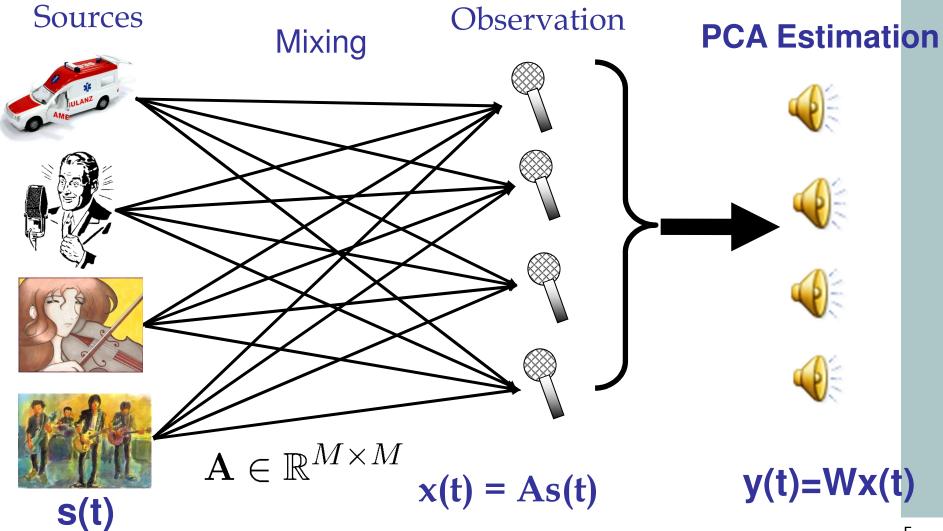
We want

$$\begin{pmatrix} s_1(1) \\ s_2(1) \end{pmatrix}, \begin{pmatrix} s_1(2) \\ s_2(2) \end{pmatrix}, \dots, \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}$$

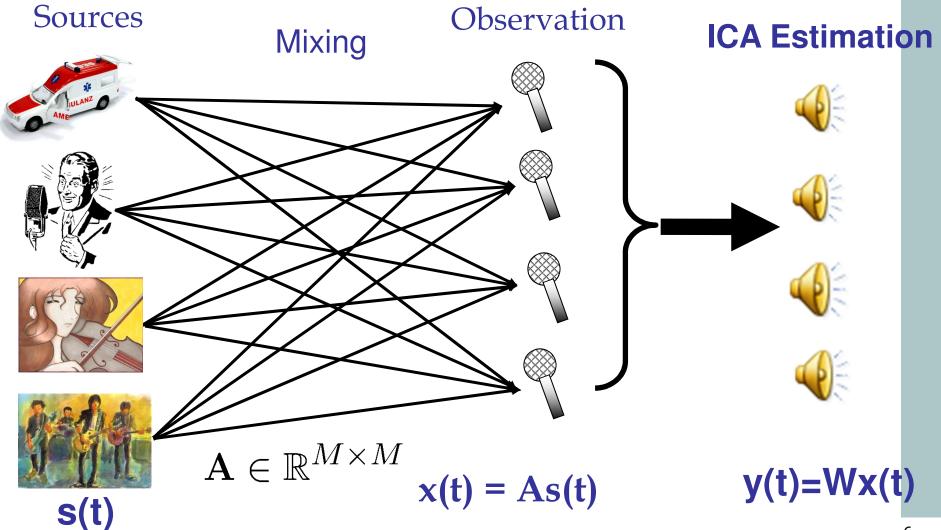
But we don't know $\{a_{ij}\}$, nor $\{s_i(t)\}$

Goal: Estimate
$$\{s_i(t)\}$$
, (and also $\{a_{ij}\}$)

The Cocktail Party Problem SOLVING WITH PCA



The Cocktail Party Problem SOLVING WITH ICA



Statistical (in)dependence

Definition (Independence) Y_1 , Y_2 are independent $\Leftrightarrow p(y_1, y_2) = p(y_1) p(y_2)$

Definition (Shannon entropy)

 $H(\mathbf{Y}) \doteq H(Y_1, \ldots, Y_m) \doteq -\int p(y_1, \ldots, y_m) \log p(y_1, \ldots, y_m) d\mathbf{y}.$

Definition (KL divergence)

$$0 \le KL(f||g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

Definition (Mutual Information)

$$0 \leq I(Y_1, ..., Y_M) \doteq \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) ... p(y_M)} dy_8$$

Solving the ICA problem with i.i.d. sources

ICA problem: $\mathbf{x} = \mathbf{As}, \ \mathbf{s} = [s_1; \ldots; s_M]$ are jointly independent.

Ambiguity: $s = [s_1; ...; s_M]$ sources can be recovered only up to sign, scale and permutation.

Proof:

- P = arbitrary permutation matrix,
- $\Lambda =$ arbitrary diagonal scaling matrix.

$$\Rightarrow \mathbf{x} = [\mathbf{A}\mathbf{P}^{-1}\mathbf{\Lambda}^{-1}][\mathbf{\Lambda}\mathbf{P}\mathbf{s}]$$

Solving the ICA problem

Lemma:

We can assume that E[s] = 0.

Proof:

Removing the mean does not change the mixing matrix. $\mathbf{x} - E[\mathbf{x}] = \mathbf{A}(\mathbf{s} - E[\mathbf{s}]).$

In what follows we assume that $E[\mathbf{ss}^T] = \mathbf{I}_M$, $E[\mathbf{s}] = 0$.

Whitening

• Let $\Sigma \doteq cov(\mathbf{x}) = E[\mathbf{x}\mathbf{x}^T] = \mathbf{A}E[\mathbf{s}\mathbf{s}^T]\mathbf{A}^T = \mathbf{A}\mathbf{A}^T$. (We assumed centered data)

• Do SVD:
$$\Sigma \in \mathbb{R}^{N \times N}$$
, $rank(\Sigma) = M$,
 $\Rightarrow \Sigma = UDU^{T}$,
where $U \in \mathbb{R}^{N \times M}$, $U^{T}U = I_{M}$, Signular vectors
 $D \in \mathbb{R}^{M \times M}$, diagonal with rank M . Singular values

Whitening

- Let $\mathbf{Q} \doteq \mathbf{D}^{-1/2} \mathbf{U}^T \in \mathbb{R}^{M \times N}$ whitening matrix
- Let $A^* \doteq QA$
- $\mathbf{x}^* \doteq \mathbf{Q}\mathbf{x} = \mathbf{Q}\mathbf{A}\mathbf{s} = \mathbf{A}^*\mathbf{s}$ is our new (*whitened*) ICA task.

We have,

$$E[x^*x^{*T}] = E[Qxx^TQ^T] = Q\Sigma Q^T = (D^{-1/2}U^T)UDU^T(UD^{-1/2}) = I_M$$

$$\Rightarrow E[\mathbf{x}^* \mathbf{x}^{*T}] = \mathbf{I}_M$$
, and $\mathbf{A}^* \mathbf{A}^{*T} = \mathbf{I}_M$.

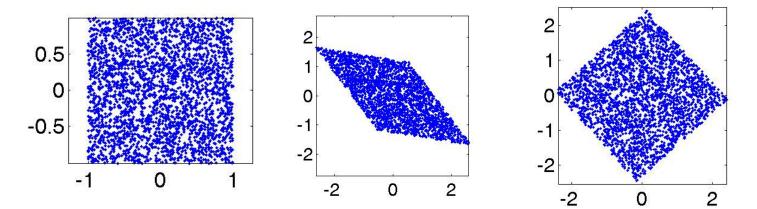
12

Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is (N-1)(N-2)/2.

 \Rightarrow whitening solves **half** of the ICA problem



original mixed whitened After whitening it is enough to consider **orthogonal matrices** for separation.

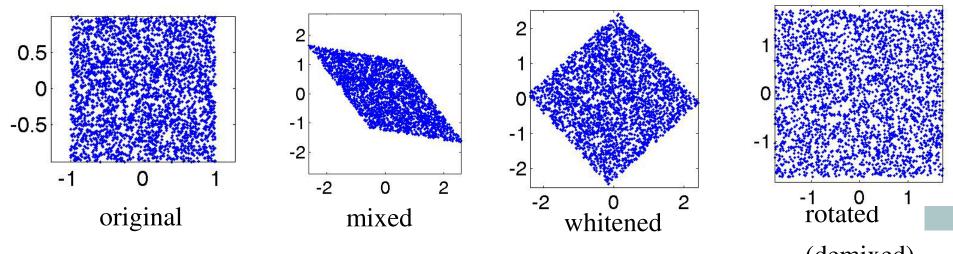
Solving ICA

ICA task: Given x,

- \Box find **y** (the estimation of **s**),
- \Box find **W** (the estimation of **A**⁻¹)

ICA solution: y=Wx

- \Box Remove mean, E[**x**]=0
- \Box Whitening, $E[\mathbf{x}\mathbf{x}^T] = \mathbf{I}$
- □ Find an orthogonal **W** optimizing an objective function
 - Sequence of 2-d Jacobi (Givens) rotations



(demixed)

Optimization Using Jacobi Rotation Matrices

$$\mathbf{G}(p,q,\theta) \doteq \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \dots & \cos(\theta) & \dots & -\sin(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \dots & \sin(\theta) & \dots & \cos(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \leftarrow \mathbf{q}$$

Observation : $\mathbf{x} = \mathbf{As}$ Estimation : $\mathbf{y} = \mathbf{Wx}$ $\mathbf{W} = \arg\min_{\tilde{\mathbf{W}} \in \mathcal{W}} J(\tilde{\mathbf{W}}\mathbf{x}),$ where $\mathcal{W} = \{\mathbf{W} | \mathbf{W} = \prod_{i} G(p_{i}, q_{i}, \theta_{i})\}$

ICA Cost Functions

Let $y \doteq Wx$, $y = [y_1; ...; y_M]$, and let us measure the dependence using Shannon's mututal information:

$$J_{ICA_1}(\mathbf{W}) \doteq I(y_1, \dots, y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y},$$

Let
$$H(\mathbf{y}) \doteq H(y_1, \dots, y_m) \doteq -\int p(y_1, \dots, y_m) \log p(y_1, \dots, y_m) d\mathbf{y}$$

Lemma

 $H(\mathbf{W}\mathbf{x}) = H(\mathbf{x}) + \log |\det \mathbf{W}|$ Proof: Homework

Therefore,

$$I(y_1, ..., y_M) = \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) \dots p(y_M)}$$

$$= -H(y_1, ..., y_M) + H(y_1) + ... + H(y_M)$$

$$= -H(x_1, ..., x_M) - \log |\det \mathbf{W}| + H(y_1) + ... + H(y_M).$$

ICA Cost Functions

$$I(y_{1},...,y_{M}) = \int p(y_{1},...,y_{M}) \log \frac{p(y_{1},...,y_{M})}{p(y_{1})...p(y_{M})}$$

= $-H(y_{1},...,y_{M}) + H(y_{1}) + ... + H(y_{M})$
= $-H(x_{1},...,x_{M}) - \log |\det W| + H(y_{1}) + ... + H(y_{M}).$
 $H(x_{1},...,x_{M})$ is constant, $\log |\det W| = 0.$

Therefore,

$$\int J_{ICA_2}(\mathbf{W}) \doteq H(y_1) + \ldots + H(y_M)$$

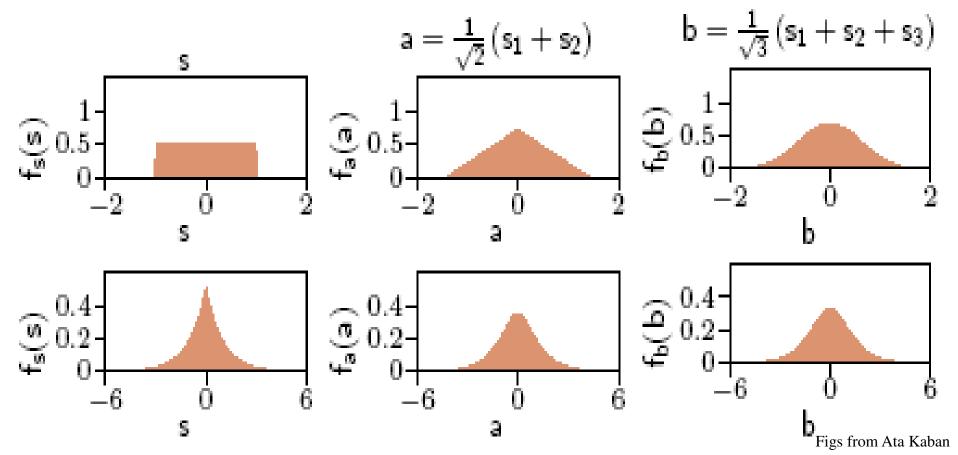
The covariance is fixed: I. Which distribution has the largest entropy?

 \Rightarrow go away from normal distribution

Central Limit Theorem

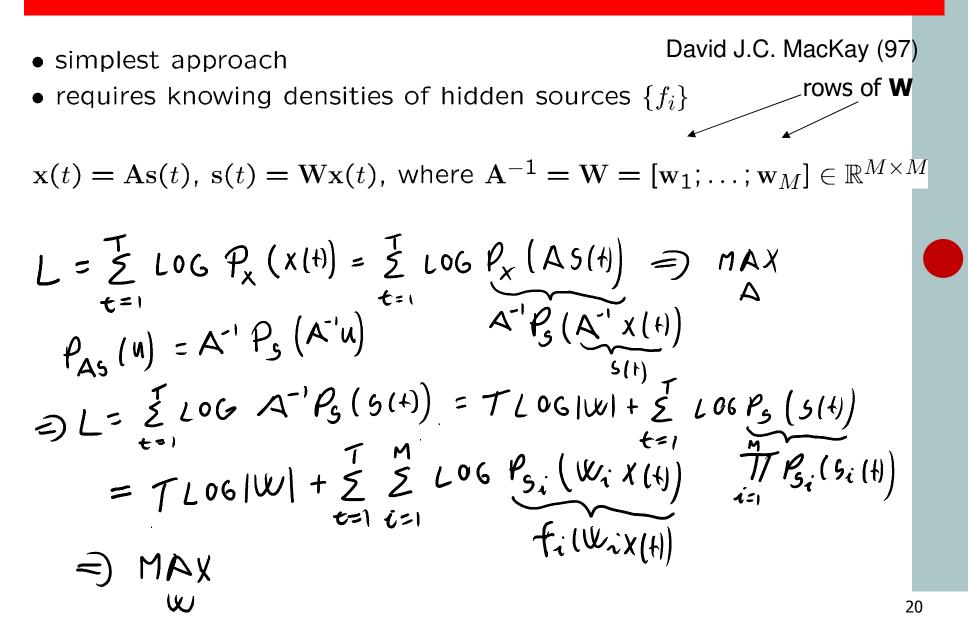
The sum of independent variables converges to the normal distribution

- \Rightarrow For separation go far away from the normal distribution
- \Rightarrow Negentropy, |kurtozis| maximization



ICA Algorithms

Maximum Likelihood ICA Algorithm



Maximum Likelihood ICA Algorithm

$$L = T \log |W| + \sum_{t=1}^{T} \sum_{k=1}^{t} \log \left(W_{k} \times (t) \right)$$

$$= MA \times L = \int_{\partial W_{ij}}^{\partial L} = j$$

$$= T(W^{T})_{ij}^{-1} + \sum_{t=1}^{T} \bigcup_{\partial W_{ij}}^{\partial U_{ij}} \sum_{k=1}^{t} \log f_{k}(W_{k} \times (t))$$

$$= T(W^{T})_{ij}^{-1} + \sum_{t=1}^{T} \frac{f_{i}'(W_{i} \times (t))}{f_{i}(W_{i} \times (t))} \times_{j}(t)$$

$$\Rightarrow \Delta \mathbf{W} \propto [\mathbf{W}^T]^{-1} + \frac{1}{T} \sum_{t=1}^T g(\mathbf{W}\mathbf{x}(t))\mathbf{x}^T(t), \text{ where } g_i = f_i'/f_i$$

21

ICA algorithm based on Kurtosis maximization

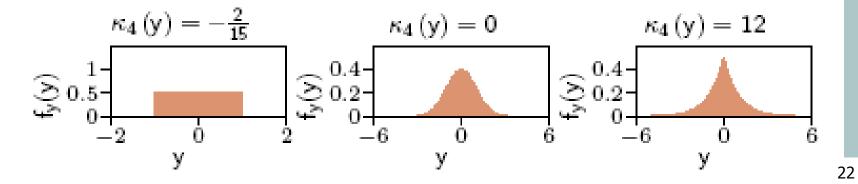
Kurtosis = 4^{th} order cumulant

Measures

•the distance from normality

•the degree of peakedness

•
$$\kappa_4(y) = \mathsf{E}\left\{y^4\right\} - \underbrace{3\left(\mathsf{E}\left\{y^2\right\}\right)^2}_{= 3 \text{ if } \mathsf{E}\left\{y\right\} = 0 \text{ and whitened}}$$



The Fast ICA algorithm (Hyvarinen)

• Given whitened data z

• Estimate the 1^{st} ICA component:

Probably the most famous ICA algorithm

$$\star y = \mathbf{w}^T \mathbf{z}, \|\mathbf{w}\| = 1, \qquad \Leftarrow \mathbf{w}^T = \mathbf{1}^{st} \text{ row of } \mathbf{W}$$

* maximize kurtosis $f(\mathbf{w}) \doteq \kappa_4(y) \doteq \mathbb{E}[y^4]$ -3 with constraint $h(\mathbf{w}) = \|\mathbf{w}\|^2 - 1 = 0$

* At optimum $f'(\mathbf{w}) + \lambda h'(\mathbf{w}) = 0^T$ (λ Lagrange multiplier) $\Rightarrow 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$

Solve this equation by Newton–Raphson's method.

The Fast ICA algorithm (Hyvarinen)

Solve: $F(\mathbf{w}) = 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$

Note:

$$y = \mathbf{w}^{T} \mathbf{z}, \|\mathbf{w}\| = 1, \mathbf{z} \text{ white } \Rightarrow \mathbb{E}[(\mathbf{w}^{T} \mathbf{z})^{2}] = 1$$

$$\stackrel{\mathbb{E}\left[\mathbf{z} \mathbf{z}^{T} \right] = 1}{\mathbb{E}\left[\mathbf{w}^{T} \mathbf{z} \mathbf{z}^{T} \mathbf{w} \right]^{\frac{1}{2}}} \stackrel{\mathbb{E}\left[\mathbf{w}^{T} \mathbf{z} \mathbf{z}^{T} \mathbf{w} \right]^{\frac{1}{2}}}{\mathbb{E}\left[\mathbf{w}^{T} \mathbf{z} \mathbf{z}^{2} \mathbf{z} \mathbf{z}^{T} \right] + 2\lambda \mathbf{I}}$$

$$F'(\mathbf{w}) = 12\mathbb{E}[(\mathbf{w}^{T} \mathbf{z})^{2}]\mathbb{E}[\mathbf{z} \mathbf{z}^{T}] + 2\lambda \mathbf{I}$$

$$\sim 12\mathbb{E}[(\mathbf{w}^{T} \mathbf{z})^{2}]\mathbb{E}[\mathbf{z} \mathbf{z}^{T}] + 2\lambda \mathbf{I}$$

$$= 12\mathbb{E}[(\mathbf{w}^{T} \mathbf{z})^{2}]\mathbf{I} + 2\lambda \mathbf{I}$$

$$= 12\mathbb{E}[(\mathbf{w}^{T} \mathbf{z})^{2}]\mathbf{I} + 2\lambda \mathbf{I}$$

The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.

$$w(k + 1) = w(k) - [F'(w(k))]^{-1} F(w(k))$$

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \frac{4\mathbb{E}[(\mathbf{w}(k)^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w}(k)}{12 + 2\lambda}$$

$$(12+2\lambda)\mathbf{w}(k+1) = (12+2\lambda)\mathbf{w}(k) - 4\mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}] - 2\lambda\mathbf{w}(k)$$

$$-\frac{12+2\lambda}{4}\mathbf{w}(k+1) = -3\mathbf{w}(k) + \mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}]$$

Therefore,

Let w_1 be the fix pont of:

$$\widetilde{\mathbf{w}}(k+1) = \mathbb{E}[(\mathbf{w}(k)^T \mathbf{z})^3 \mathbf{z}] - 3\mathbf{w}(k)$$
$$\mathbf{w}(k+1) = \frac{\widetilde{\mathbf{w}}(k+1)}{\|\widetilde{\mathbf{w}}(k+1)\|}$$

• Estimate the 2^{nd} ICA component similarly using the $w\perp w_1$ additional constraint... and so on ...

Other Nonlinearities

MAXEG(WTZ) G(V) = 104-3 (IN THE PREVIOUS 5.T WTW=1 $= F(w) = E Z g(w^{T} z) - \lambda w = O \in \mathbb{R}^{2} g_{H} = G' g_{H}$ $\nabla F(w) = IE[zz^Tg'(w^Tz)] - \lambda I$ 4 g³ 10/9/=12 $\approx IE[zz^{T}]E[g'(w^{T}z)] - \lambda I'$ = E[g'(wTZ)]I- 7I T SCALAR DIAGONAL MIX WITH IDENTICAL ELEMENTY

Other Nonlinearities

Newton method:

$$W(l_{2}+1) = W(l_{1}) - \left[\nabla F(W(l_{1}))\right]^{-1} F(w(l_{2}))$$

١

$$= w(e_{2}) - \underbrace{\mathbb{E}\left[\frac{2}{2}g(w_{(e_{1})}^{T}z)\right] - \mathcal{A}W(e_{2})}_{IE\left[g'(w_{(e_{1})}^{T}z)\right] - \mathcal{A}}$$

$$= \int \left(IE\left[g'(w_{(e_{1})}^{T}z) - \mathcal{A}\right)w(e_{2}+1\right) = \left(IE\left[g'(w_{(e_{1})}^{T}z)\right] - \mathcal{A}\right)w(e_{1}) + \mathcal{A}w(e_{2}) - IE\left[\frac{2}{2}g(w(e_{1})^{T}z)\right] \right)$$

$$= \int \left(IE\left[g'(w_{(e_{1})}^{T}z) - \mathcal{A}\right)w(e_{2}+1\right) = IE\left[\frac{2}{2}g(w(e_{1})^{T}z)\right] - \mathcal{A}\right)w(e_{2}) + \mathcal{A}w(e_{2}) - IE\left[\frac{2}{2}g(w(e_{1})^{T}z)\right]w(e_{2})\right)$$

$$= \int (U(e_{1}+1)) = IE\left[\frac{2}{2}g(w(e_{1})^{T}z)\right] - IE\left[g'(w_{1}(e_{1})^{T}z)\right]w(e_{2})$$

$$= \int W(e_{2}+1) = IE\left[\frac{2}{2}g(w(e_{1})^{T}z)\right] - IE\left[g'(w_{1}(e_{1})^{T}z)\right]w(e_{2})$$

Fast ICA for several units

$$\begin{split} & \mathcal{W} = \begin{bmatrix} \mathbf{w}_{n}^{T} \\ \mathbf{w}_{n}^{T} \end{bmatrix} \\ & \mathcal{W} \mathcal{W}^{T} = I \\ & \mathcal{W}_{n}^{T} \end{bmatrix} \\ & \mathcal{W} \mathcal{W}^{T} = I \\ & \mathcal{W} \mathcal{W}^{T} = I \\ & \mathcal{W} \mathcal{W}^{T} = I \\ & \mathcal{W} \mathcal{W}^{T} = S \\ & \mathcal{W} \mathcal{W}^{T} = S \\ & \mathcal{W} \mathcal{W}^{T} = S \\ & \mathcal{W} \mathcal{W}^{T} = \mathcal{W} \mathcal{W}^{T} \\ & \mathcal{W} \mathcal{W} \mathcal{W}^{T} = \mathcal{W} \mathcal{W}^{T} \\ & \mathcal{W} \mathcal{W} \mathcal{W}^{T} \\ & \mathcal{W} \mathcal{W} \mathcal{W}^{T} \\ & \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \\ & \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \\ & \mathcal{W} \mathcal{W} \\ & \mathcal{W} \mathcal{W} \\ & \mathcal{W} \mathcal{W} \\ & \mathcal{W} \mathcal{W} \mathcal{W} \\ & \mathcal{W} \\$$