
Putting it all together

Barnabas Poczos & Ryan Tibshirani
Convex Optimization 10-725/36-725

1

The big optimization toolbox

So far we’ve learned about:

• First-order methods

• Newton/quasi-Newton methods

• Interior point methods

These comprise a good part of the core tools in optimization, and
are a big focus in this field

Given the number of available tools, it may seem overwhelming to
choose a method in practice. A fair question: how to know what
to use when?

By the way, there’s still a lot more out there. Before the course is
over we’ll also learn:

• Dual methods

• Coordinate descent

2

Disclaimer

It’s not possible to give a complete answer to this question. These
are guidelines; any real problem should still be treated carefully

What are some important aspects to think about?

• Assumptions on criterion function

• Assumptions on constraint functions/set

• Ease of implementation (how to choose parameters?)

• Cost of each iteration

• Number of iterations needed

Other important aspects, that we won’t consider: parallelization,
data storage issues, statistical interplay

3

Outline

Today:

• Big table of methods

• Case study

4

Gradient Subgrad Prox grad Newton Conj grad quasi-Newton
Criterion smooth f any f smooth

+ simple,
f = g + h

doubly smooth
f

doubly smooth
f

doubly smooth
f

Constraints projection
onto con-
straint set

projection
onto con-
straint set

constrained
prox opera-
tor

equality con-
straints

unconstrained unconstrained

Opti pa-
rameters

fixed
step size
(t ≤ 1/L)
or line
search

diminishing
step sizes

fixed
step size
(t ≤ 1/L)
or line
search

pure step size
(t = 1) or line
search

FR & PR: line
search, ver-
sions that use
the Hessian:
fixed step size

DFP & BFGS:
line search

Iteration
cost

cheap
(compute
gradient)

cheap
(compute
subgradi-
ent)

moderately
cheap
(evaluate
prox)

moderate to
expensive
(compute Hes-
sian and solve
linear system)

moderately
cheap (com-
pute gradients,
inner prod-
ucts)

moderately
cheap (com-
pute gradients,
inner products;
no matrix
inversion, but
storage for
estimated in-
verse Hessian)

Rate O(1
ε
)

[O(1√
ε
)

with ac-
celeration,
O(log(1

ε
))

with strong
convexity]

O(1
ε2

) O(1
ε
)

[O(1√
ε
)

with ac-
celeration,
O(log(1

ε
))

with strong
convexity]

O(log log(1
ε
))

(quadratic
rate)

superlinear
rate, n-step
quadratic rate
(n steps are
as effective as
one Newton
step)

superlinear
rate, n-step
quadratic rate
(n steps are
as effective as
one Newton
step)

5

Barrier method Primal-dual IPM ADMM Coord desc
Criterion doubly smooth f doubly smooth f block separable,

f(x, z) =
g(x) + h(z)

smooth +
component-
wise separable

Constraints doubly smooth
hi (ineq con-
straints)

doubly smooth
hi (ineq con-
straints)

equality con-
straints (al-
ways) & ineq
constraints
(sometimes)

component-
wise separable
constraints

Opti pa-
rameters

inner loop: fixed
step size or use
line search, outer
loop: diverging
barrier parameter

line search for
step size &
diverging barrier
parameter

fixed aug-
mented La-
grange parame-
ter (theory), or
varied by itera-
tion (practice)

none!

Iteration
cost

expensive to very
expensive (one
iteration solves
one smoothed
problem, by
Newton)

moderate to
expensive (one
iteration per-
forms one
Newton step)

cheap to ex-
pensive (one
iteration solves
two subprob-
lems, makes a
dual step)

cheap to expen-
sive (one iter-
ation performs
a full cycle
of component
minimizations)

Rate O(log(1
ε
))

(both in terms
of iterations and
Newton steps)

O(log(1
ε
)) not known

in general,
but known in
special cases;
practically tends
to behave like
a first-order
method

not known
in general,
but known in
special cases;
practically tends
to behave faster
than first-order
methods

6

Case study: generalized lasso regularization

Consider the problem

min
β∈Rn

f(β) + λ‖Dβ‖1

where f : Rn → R is a smooth, convex function and D ∈ Rm×n is
a penalty matrix. This is called a generalized lasso regularization
problem

Usual lasso, D = I, encodes sparsity in β, while the generalized
lasso encodes sparsity in

Dβ =

 D1β
...

Dmβ


where D1, . . . Dm are the rows of D. This can yield interesting
structure in β, depending on choice of D

7

Special case: fused lasso

D =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 , so ‖Dβ‖1 =

n−1∑
i=1

|βi − βi+1|

E.g.,

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

0 20 40 60 80 100

−
2

−
1

0
1

●

●●●

●

●

●●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●

f(β) =
∑n

i=1(yi − βi)2
f(β) =

∑n
i=1(−ziβi+

log(1 + e−βi))
8

Special case: linear trend filtering

D =


1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...
0 0 0 . . . −2 1

 , so ‖Dβ‖1 =

n−2∑
i=1

|βi−2βi+1−βi+2|

E.g.,

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

2
4

6
8

10
12

f(β) =
∑n

i=1(yi − βi)2

9

Special case: fused lasso on a graph, G = ({1, . . . n}, E). Here D
is |E| × n, and if e` = (i, j), then D has `th row

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0)

so
‖Dβ‖1 =

∑
(i,j)∈E

|βi − βj |

E.g., f(β) =
∑n

i=1(yi − βi)2,

observed data fused lasso solution

y1, . . . yn β̂1, . . . β̂n
10

Special case: equality constrained lasso regularization problem

Consider the problem

min
β∈Rn

f(β) + λ‖β‖1 subject to Aβ = 0

Reparametrize as follows: let D ∈ Rn×p have columns that span
null(A); then Aβ = 0⇐⇒ β = Dθ for some θ ∈ Rp

Therefore the above is equivalent to the problem

min
θ∈Rp

f(Dθ) + λ‖Dθ‖1

Note that D here is generically dense and unstructured

11

Generalized lasso algorithms

So, how to solve
min
β∈Rn

f(β) + λ‖Dβ‖1 ?

For the subgradient method, we repeat updates in the direction

∆ = ∇f(β) + λDTγ

where γ ∈ ∂‖x‖1 evaluated at x = Dβ, i.e.,

γi ∈

{
{sign

(
(Dβ)i

)
} if Dβi 6= 0

[−1, 1] if Dβi = 0
, i = 1, . . .m

This downside (as usual) is that convergence is slow. However, if
(Dβ)i 6= 0 for i ∈ S, then

∆ = ∇f(β) + λ
∑
i∈S

sign
(
(Dβ)i

)
·Di

is a proper update direction, where Di is the ith row of D
12

What about generalized gradient descent? Prox operator is

proxt(β) = argmin
z∈Rn

1

2t
‖β − z‖22 + λ‖Dz‖1

This is not easy for a generic D (as opposed to soft-thresholding,
corresponding to D = I) ... in fact, this itself is a pretty hard
optimization problem

Nothing else obviously applicable (of what we learned so far) ... so
derive the dual problem

In fact, it is never a bad idea to look at the dual, even when you
think you have a good approach for the primal problem!

13

The dual of
min
β∈Rn

f(β) + λ‖Dβ‖1

is
min
u∈Rm

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Here f∗ is the conjugate of f . Note that u is m dimensional (the
number of rows of D) while β is n dimensional

The primal and dual solutions β̂ and û are related by

∇f(β̂) +DT û = 0

and

ûi ∈


{λ} if (Dβ̂)i > 0

{−λ} if (Dβ̂)i < 0

[−λ, λ] if (Dβ̂)i = 0

, i = 1, . . .m

So ûi ∈ (−λ, λ) =⇒ (Dβ̂)i = 0

14

Primal : min
β∈Rn

f(β) + λ‖Dβ‖1

Dual : min
u∈Rm

f∗(−DTu) subject to ‖u‖∞ ≤ λ

General trend is that:

• For large λ, many components (Dβ̂)i are zero, and many
components ûi are strictly between −λ and λ

• For small λ, many components (Dβ̂)i are nonzero, and many
components ûi are equal to λ or −λ

When many (Dβ̂)i are zero, there are fewer “effective parameters”
to fit in the primal; when many ûi are ±λ, the same is true in the
dual

Therefore, keep in mind:

• Large λ =⇒ easier problem for primal algorithms

• Small λ =⇒ easier problem for dual algorithms

15

How to solve the dual

min
u∈Rm

f∗(−DTu) subject to ‖u‖∞ ≤ λ ?

Generalized gradient is now tractable, because the prox operator

proxt(u) = argmin
z∈Rm

1

2t
‖u− z‖22 subject to ‖z‖∞ ≤ λ

is easy. Note that this is just projection onto a box, i.e., the point
ẑ = proxt(u) has components

ẑi =


λ if ui > λ

−λ if ui < −λ
ui if ui ∈ [−λ, λ]

, i = 1, . . .m

16

Can also rewrite dual problem as

min
u∈Rm

f∗(−DTu) subject to −λ ≤ ui ≤ λ, i = 1, . . .m

These are just linear constraints, so we can easily apply an interior
point method

With the barrier method, we repeatedly solve

min
u∈Rm

t · f∗(−DTu) + φ(u)

for larger and larger values of the barrier parameter t, where

φ(u) = −
m∑
i=1

(
log(λ− ui) + log(ui + λ)

)
How efficient is this?

17

We will solve the inner problem

min
u∈Rm

t · f∗(−DTu) + φ(u)

using Newton’s method. Let F (u) = tf∗(−DTu) + φ(u); then the
Newton updates are given by

∆ = −
(
∇2F (u)

)−1∇F (u)

Note that

∇F (u) = −t ·D
(
∇f∗(−DTu)

)
+∇φ(u)

∇2F (u) = t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

To compute the Newton update ∆, we need to invert ∇2F (u).

• Second term: ∇2φ(u) is a diagonal matrix

• First term: if both ∇2f∗(x) and D are structured matrices,
then D∇2f∗(x)DT can too be structured

18

Putting it all together:

• Primal subgradient method: iterations are cheap (we sum up
rows of D over active set S), but convergence is slow

• Primal generalized gradient: iterations involve evaluating

proxt(β) = argmin
z∈Rn

1

2t
‖β − z‖22 + λ‖Dz‖1

which is generally expensive, convergence is medium

• Dual generalized gradient: iterations involve projecting onto a
box (very efficient), convergence is medium

• Dual barrier method: Newton iterations involve solving linear
system in

t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

which may or may not be expensive, convergence is fast

19

Back to some examples

Suppose that we are studying the linear trend filtering problem, so

D =


1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...
0 0 0 . . . −2 1

 ,
and the loss is either least squares loss f(β) =

∑n
i=1(yi − βi)2, or

logistic loss f(β) =
∑n

i=1(−ziβi + log(1 + e−βi))

Suppose further that we desire a solution at a fairly high level of
accuracy—otherwise, we notice “wiggles” in the plotted trend
β̂1, . . . β̂n

What algorithm to use?

20

Primal subgradient and primal generalized gradient are out

As for dual algorithms, one can check that the conjugate f∗ can be
derived in closed form for both the least squares and logisitic losses.
Moreover, ∇2f∗(x) is a diagonal matrix in both of these cases

Therefore the Newton steps in the barrier method involve solving a
linear system in

DW (u)DT

where W (u) is a diagonal matrix; this is a highly sparse, structured
matrix, and so these systems can be solved very efficiently. Hence,
the barrier method is the way to go

Dual generalized gradient descent admits very efficient iterations,
but takes far too long to converge to high accuracy (suffers also
from the poor conditioning of D here)

21

Recall example from our first lecture:

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Timepoint

A
ct

iv
at

io
n

le
ve

l

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●●

●●
●

●
●

●

●●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

0 200 400 600 800 1000

0
5

10

Timepoint
A

ct
iv

at
io

n
le

ve
l

Dual interior point method
30 iterations

Dual generalized gradient
10,000 iterations

22

The same story holds when D corresponds to the fused lasso on a
general graph: the barrier method has very efficient Newton steps,
and is the preferred method

However, for the simple (1-dimensional) fused lasso,

D =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1


the prox function in the primal is

proxt(β) = argmin
z∈Rn

1

2t
‖β − z‖22 + λ

n∑
i=1

|zi − zi+1|

and this can be evaluated directly using a specialized, fast dynamic
programming algorithm1

1Johnson (2013), “A dynamic programming algorithm for the fused lasso
and L0-segmentation”

23

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Problem size n

T
im

e
(s

ec
on

ds
)

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●

DP prox
BD solve

1 iteration of primal gen-
eralized gradient versus 1
iteration of dual barrier
method

Hence, for D corresponding to the 1-dimensional fused lasso, the
primal generalized gradient descent algorithm is preferred

This is because it requires a simpler implementation (once the prox
has been given to us), and it applies to any smooth f (not just the
least squares loss or logistic regression loss)

Also, it favors the large λ setting, which is typically (statisically)
the setting we are interested in

24

Instead conder a problem with a dense, generic D, e.g., stemming
from an equality constrained lasso problem

Primal prox is intractable, and the dual barrier method has costly
Newton steps

But (provided that we can form f∗), dual generalized gradient
descent still features efficient iterations: after evaluating

u+ t ·D
(
∇f∗(−DTu)

)
we just project onto the box [−λ, λ]m

So, especially if we do not need a highly accurate solution, dual
generalized gradient is the best method

25

Finally, consider a problem in which D is dense and so massive
that even fitting it in memory is a burden

Depending on f and its gradient, subgradient method may be the
only feasible algorithm; recall that the subgradient update direction
can be taken as

∇f(β) + λ
∑
i∈S

sign
(
(Dβ)i

)
·Di

where S is the set of all i such that (Dβ)i 6= 0

If λ is large enough so that many (Dβ)i = 0, then we only need to
fit a small part of D in memory (or, read a small part of D from a
file) to perform subgradient updates

26

