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Markov Chains 

Andrey Markov 
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Markov Chains 

Markov chain: 

Homogen Markov chain: 
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Markov Chains 

 1-Step state transition matrix: 

 t-Step state transition matrix: 

Lemma: 

 Assume that the state space is finite: 

Lemma: The state transition matrix is stochastic: 
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Markov chain with three states (s = 3) 

Markov Chains Example 

Transition graph Transition matrix 
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Markov Chains 

If the probability vector for the initial state is  

it follows that  

and, after several iterations (multiplications by T ) 

no matter what initial distribution ¹(x1) was. 

stationary distribution 

The chain has forgotten its past. 
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Our goal is  

 to find conditions under which the Markov chain forgets its 
 past, and independently from its starting distribution, the state 
 distributions converge to a stationary distribution.  

Markov Chains 

This is a necessary condition for having limit behavior of the Markov chain. 

Definition: [stationary distribution, invariant distribution] 
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For any starting point, the chain will convergence to the unique invariant 
distribution p(x), as long as    

Markov Chains 
Theorem: 

1. T is a stochastic transition matrix 

2. T is irreducible 

3. T is aperiodic 
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Limit Theorem of Markov Chains 

If the Markov chain is Irreducible and Aperiodic, then: 

More formally: 



10 

For each pairs of states (i,j), there is a positive probability, starting in 
state i, that the process will ever enter state j.  

= The matrix T cannot be reduced to separate smaller matrices 

= Transition graph is connected. 

Markov Chains 
Definition  

Irreducibility: 

It is possible to get to any state from any state. 
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Markov Chains 
Definition 

The chain cannot get trapped in cycles. Aperiodicity: 

A state i has period k if any return to state i, must occur in multiples of 
k time steps. Formally, the period of a state i is defined as 

For example, suppose it is possible to return to the state in 
{6,8,10,12,...} time steps. Then k=2 

(where "gcd" is the greatest common divisor) 

Definition 



12 

Markov Chains 
Definition 

If k = 1, then the state is said to be aperiodic:  

 returns to state i can occur at irregular times.  

 

In other words,  

 a state i is aperiodic if there exists n such that for all n' ≥ n, 

 

A Markov chain is aperiodic if every state is aperiodic.  

Definition 
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 Let 

However, if we start the chain from (1,0), or (0,1), then the 
chain get traps into a cycle, it doesn’t forget its past.  

Markov Chains 

Example for periodic Markov chain: 
In this case 

An irreducible chain is said to be aperiodic, if for some n ¸ 0 and some 
state j 

Periodic Markov chains don’t forget their past.  

An irreducible Markov chain only needs one aperiodic state  
 to imply all states are aperiodic. 

Theorem: 

Corollary: 
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A sufficient, but not necessary, condition to ensure that a particular ¼ is 
the desired invariant distribution of the Markov chain is the detailed 
balance condition. 

Reversible Markov chains 
Detailed Balance Property 

Definition: reversibility /detailed balance condition: 

 

Theorem: 
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How fast can Markov chains forget 
the past? 

 irreducible and aperiodic Markov chains  

 have the target distribution as the invariant distribution.  

 the detailed balance condition is satisfied.  

It is also important to design samplers that converge quickly.   

MCMC samplers are  
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 ¼ is the left eigenvector of the matrix T with eigenvalue 1.  

 

 The Perron-Frobenius theorem from linear algebra tells us that the 
remaining eigenvalues have absolute value less than 1.  

 

 The second largest eigenvalue, therefore, determines the rate of 
convergence of the chain, and should be as small as possible. 

Spectral properties 
Theorem: If 
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The Hastings-Metropolis Algorithm 
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The Hastings-Metropolis Algorithm 

Our goal:  

The main idea is to construct a time-reversible Markov chain 
with (¼1,…,¼m) limit distributions 

We don’t know B !  

Generate samples from the following discrete distribution: 

Later we will discuss what to do when the distribution is continuous 
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The Hastings-Metropolis Algorithm 
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate. 

No rejection: we use all X1, X2,… Xn, … 
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Example for Large State Space 
Let {1,2,…,m} be the state space of a Markov chain that we 
can simulate. 

d-dimensional grid: 

 Max 2d possible movements at each grid point (linear in d) 

 Exponentially large state space in dimension d   
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The Hastings-Metropolis Algorithm 

Theorem 

Proof 



22 

The Hastings-Metropolis Algorithm 

Observation 

Corollary 

Theorem 

Proof: 
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The Hastings-Metropolis Algorithm 

Proof: 

Theorem 

Note: 
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The Hastings-Metropolis Algorithm 

It is not rejection sampling, we use all the samples! 



25 

Continuous Distributions 

 The same algorithm can be used for  
 continuous distributions as well. 

 

 In this case, the state space is continuous. 



26 q(x | x(i )) = N(x(i), 100), 5000 iterations 

Bimodal target distribution: p(x) ∝ 0.3 exp(−0.2x2) +0.7 exp(−0.2(x − 10)2)  

Experiment with HM  
An application for continuous distributions  
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Good proposal distrib. is important 
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HM on Combinatorial Sets 

Generate uniformly distributed samples from the set of permutations  

{1,2,3}: 1+4+9=14 

{1,3,2}: 1+6+6=13 

{2,3,1}: 2+6+3=11 

{2,1,3}: 2+2+9=13 

{3,1,2}: 3+2+6=11 

{3,2,1}: 3+4+3=10 

Let n=3, and a=12: 
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To define a simple Markov chain on , we need the concept of 

neighboring elements (permutations): 

Definition: Two permutations are neighbors, if one results from  
 the interchange of two of the positions of the other: 

(1,2,3,4) and (1,2,4,3) are neighbors.  

(1,2,3,4) and (1,3,4,2) are not neighbors. 

HM on Combinatorial Sets 
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HM on Combinatorial Sets 

That is what we wanted! 
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Gibbs Sampling: The Problem 

Our goal is to generate samples from 

Suppose that we can generate samples from 
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Gibbs Sampling: Pseudo Code 
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Gibbs Sampling: Theory 
Let 

and let 

Observation: By construction, this HM sampler would sample from 
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Gibbs Sampling is a Special HM 

Proof: 
By definition: 

Theorem: The Gibbs sampling is a special case of HM with 
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Gibbs Sampling is a Special HM 

Proof: 
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Gibbs Sampling in Practice 
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Simulated Annealing 
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Goal: Find 

Simulated Annealing 
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Theorem: 

Proof: 

Simulated Annealing 
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Main idea 

Simulated Annealing 

 Let ¸ be big.  

 Generate a Markov chain with limit distribution P¸(x). 

 In long run, the Markov chain will jump among the maximum points of 
P¸(x). 

Introduce the relationship of neighboring vectors:  
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Uniform distribution 

Use the Hastings- Metropolis sampling: 

Simulated Annealing 
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With prob. ® accept the new state 

with prob. (1-®) don't accept and stay 

Simulated Annealing: Pseudo Code 
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With prob. ®=1 accept the new state since 
we increased V 

Simulated Annealing: Special case 

In this special case: 
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Simulated Annealing: Problems 



45 

Simulated Annealing 

Temperature = 1/ ¸ 
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Simulated Annealing 
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