
Dual methods and ADMM

Barnabas Poczos & Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Recall conjugate functions

Given f : Rn → R, the function

f∗(y) = max
x∈Rn

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, as

−f∗(y) = min
x∈Rn

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z∈Rn

f(z)− yT z

and for strictly convex f , ∇f∗(y) = argminz∈Rn(f(z)− yT z)

2

Outline

Today:

• Dual gradient methods

• Dual decomposition

• Augmented Lagrangians

• ADMM

3

Dual gradient methods

What if we can’t derive dual (conjugate) in closed form, but want
to utilize dual relationship? Turns out we can still use dual-based
subradient or gradient methods

E.g., consider the problem

min
x∈Rn

f(x) subject to Ax = b

Its dual problem is

max
u∈Rm

−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = f∗(−ATu), note that
∂g(u) = −A∂f∗(−ATu), and recall

x ∈ ∂f∗(−ATu) ⇐⇒ x ∈ argmin
z∈Rn

f(z) + uTAz

4

Therefore the dual subgradient method (for minimizing negative of
dual objective) starts with an initial dual guess u(0), and repeats
for k = 1, 2, 3, . . .

x(k) ∈ argmin
x∈Rn

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

where tk are step sizes, chosen in standard ways

Recall that if f is strictly convex, then f∗ is differentiable, and so
we get dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x∈Rn

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

(difference is that x(k) is unique, here)

5

Fact: if f strongly convex with parameter d, then ∇f∗ Lipschitz
with parameter 1/d

Check: if f strongly convex and x is its minimizer, then

f(y) ≥ f(x) + d

2
‖y − x‖2, all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
d

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
d

2
‖xu − xv‖22

Adding these together:

d‖xu − xv‖22 ≤ (u− v)T (xu − xv)

Using Cauchy-Schwartz, rearranging: ‖xu − xv‖2 ≤ (1/d)·‖u− v‖2
6

Applying what we know about gradient descent: if f is strongly
convex with parameter d, then dual gradient ascent with constant
step size tk ≤ d converges at rate O(1/k). (Note: this is quite a
strong assumption leading to a modest rate!)

Dual generalized gradient ascent and accelerated dual generalized
gradient method carry through in similar manner

Disadvantages of dual methods:

• Can be slow to converge (think of subgradient method)

• Poor convergence properties: even though we may achieve
convergence in dual objective value, convergence of u(k), x(k)

to solutions requires strong assumptions (primal iterates x(k)

can even end up being infeasible in limit)

Advantage: decomposability

7

Dual decomposition

Consider

min
x∈Rn

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) is division into B blocks of variables, so each
xi ∈ Rni . We can also partition A accordingly

A = [A1, . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient:

x+ ∈ argmin
x∈Rn

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+i ∈ argmin
xi∈Rni

fi(xi) + uTAixi, for i = 1, . . . B

i.e., minimization decomposes into B separate problems

8

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi∈Rni

fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

(B∑
i=1

Aix
(k−1)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3

9

Example with inequality constraints:

min
x∈Rn

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition (projected subgradient method) repeats for
k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi∈Rni

fi(xi) + (u(k−1))TAixi, i = 1, . . . B

v(k) = u(k−1) + tk

(B∑
i=1

Aix
(k−1)
i − b

)
u(k) = (v(k))+

where (·)+ is componentwise thresholding, (u+)i = max{0, ui}

10

Price coordination interpretation (from Vandenberghe’s lecture
notes):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . .m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative

11

Augmented Lagrangian

Convergence of dual methods can be greatly improved by utilizing
augmented Lagrangian. Start by transforming primal

min
x∈Rn

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

Clearly extra term (ρ/2) · ‖Ax− b‖22 does not change problem

Assuming, e.g., A has full column rank, primal objective is strongly
convex (parameter ρ · σ2min(A)), so dual objective is differentiable
and we can use dual gradient ascent: repeat for k = 1, 2, 3, . . .

x(k) = argmin
x∈Rn

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k−1) − b)

12

Note step size choice tk = ρ, for all k, in dual gradient ascent

Why? Since x(k) minimizes f(x) + (u(k−1))TAx+ ρ
2‖Ax− b‖

2
2

over x ∈ Rn,

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is exactly the stationarity condition for the original primal
problem; can show under mild conditions that Ax(k)− b approaches
zero (primal iterates approach feasibility), hence in the limit KKT
conditions are satisfied and x(k), u(k) approach optimality

Advantage: much better convergence properties

Disadvantage: not decomposable (separability compromised by
augmented Lagrangian!)

13

ADMM

ADMM (Alternating Direction Method of Multipliers): go for the
best of both worlds!

I.e., good convergence properties of augmented Lagrangians, along
with decomposability

Consider minimization problem

min
x∈Rn

f1(x1) + f2(x2) subject to A1x1 +A2x2 = b

As usual, we augment the objective

min
x∈Rn

f1(x1) + f2(x2) +
ρ

2
‖A1x1 +A2x2 − b‖22

subject to A1x1 +A2x2 = b

14

Write the augmented Lagrangian as

Lρ(x1, x2, u) = f1(x1) + f2(x2) + uT (A1x1 +A2x2 − b) +
ρ

2
‖A1x1 +A2x2 − b‖22

ADMM repeats the steps, for k = 1, 2, 3, . . .

x
(k)
1 = argmin

x1∈Rn1

Lρ(x1, x
(k−1)
2 , u(k−1))

x
(k)
2 = argmin

x2∈Rn2

Lρ(x
(k)
1 , x2, u

(k−1))

u(k) = u(k−1) + ρ(A1x
(k)
1 +A2x

(k)
2 − b)

Note that the usual method of multipliers would have replaced the
first two steps by

(x
(k)
1 , x

(k)
2) = argmin

(x1,x2)∈Rn

Lρ(x1, x2, u
(k−1))

15

Convergence guarantees

Under modest assumptions on f1, f2 (note: these do not require
A1, A2 to be full rank), we get that ADMM iterates for any ρ > 0
satisfy:

• Residual convergence: r(k) = A1x
(k)
1 −A2x

(k)
2 − b→ 0 as

k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f1(x
(k)
1) + f2(x

(k)
2)→ f?, where f? is

the optimal primal criterion value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010)

Note that we do not generically get primal convergence, but this
can be shown under more assumptions

16

Scaled form

It is often easier to express the ADMM algorithm in scaled form,
where we replace the dual variable u by a scaled variable w = u/ρ

In this parametrization, the ADMM steps are

x
(k)
1 = argmin

x1∈Rn1

f1(x1) +
ρ

2
‖A1x1 +A2x

(k−1)
2 − b+ w(k−1)‖22

x
(k)
2 = argmin

x2∈Rn2

f2(x2) +
ρ

2
‖A1x

(k)
1 +A2x2 − b+ w(k−1)‖22

w(k) = w(k−1) +A1x
(k)
1 +A2x

(k)
2 − b

Note that here the kth iterate w(k) is just given by a running sum
of residuals:

w(k) = w(0) +

k∑
i=1

(
A1x

(i)
1 +A2x

(i)
2 − b

)
17

Practicalities and tricks

In practice, ADMM obtains a relatively accurate solution in a
handful of iterations, but requires many, many iterations for a
highly accurate solution. Hence it behaves more like a first-order
method than a second-order method

Choice of ρ can greatly influence practical convergence of ADMM

• ρ too large → not enough emphasis on minimizing f1 + f2

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ that is useful in
practice (but without convergence guarantees)

Like deriving duals, getting a problem into ADMM form often
requires a bit of trickery (and different forms can lead to different
algorithms)

18

Alternating projections, revisited

Consider finding a point in intersection of convex sets C,D ⊆ Rn.
We solve

min
x∈Rn

1C(x) + 1D(x)

To get into ADMM form, we write this as

min
x,z∈Rn

1C(x) + 1D(z) subject to x− z = 0

Each ADMM cycle involves two projections:

x(k) = argmin
x∈Rn

PC
(
z(k−1) − w(k−1))

z(k) = argmin
z∈Rn

PD
(
x(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

This is like the classical alternating projections method, but now
with a dual variable w (much more efficient)

19

Generalized lasso, revisited

Given the usual y ∈ Rn, X ∈ Rn×p, and an additional D ∈ Rm×p,
the generalized lasso problem solves

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1

The generalized lasso is computationally harder than the lasso
(D = I); recall our previous discussion on algorithms. Rewrite as

min
β∈Rp, α∈Rm

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to Dβ − α = 0

and ADMM delivers a simple algorithm for the generalized lasso,

β(k) = (XTX + ρDTD)+
(
XT y + ρDT (α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(Dβ

(k) + w(k−1))

w(k) = w(k−1) +Dβ(k) − α(k)

20

References

• S. Boyd and N. Parikh and E. Chu and B. Peleato and J.
Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

21

