	Gradient	Subgrad	Prox grad	Newton	Conj grad	quasi-Newton
Criterion	smooth <i>f</i>	any f	smooth + simple, f = g + h	doubly smooth f	doubly smooth f	doubly smooth f
Constraints	projection onto con- straint set	projection onto con- straint set	constrained prox opera- tor	equality con- straints	unconstrained	unconstrained
Opti pa- rameters	fixed step size $(t \leq 1/L)$ or line search	diminishing step sizes	fixed step size $(t \leq 1/L)$ or line search	pure step size $(t=1)$ or line search	FR & PR: line search, ver- sions that use the Hessian: fixed step size	DFP & BFGS: line search
Iteration cost	cheap (compute gradient)	cheap (compute subgradi- ent)	moderately cheap (evaluate prox)	moderate to expensive (compute Hes- sian and solve linear system)	moderately cheap (com- pute gradients, inner prod- ucts)	moderately cheap (com- pute gradients, inner products; no matrix inversion, but storage for estimated in- verse Hessian)
Rate	$\begin{array}{c} O(\frac{1}{\epsilon}) \\ [O(\frac{1}{\sqrt{\epsilon}}) \\ \text{with acceleration,} \\ O(\log(\frac{1}{\epsilon})) \\ \text{with strong convexity} \end{array}$	$O(\frac{1}{\epsilon^2})$	$\begin{array}{c} O(\frac{1}{\epsilon}) \\ [O(\frac{1}{\sqrt{\epsilon}}) \\ \text{with acceleration,} \\ O(\log(\frac{1}{\epsilon})) \\ \text{with strong convexity} \end{array}$	$O(\log \log(rac{1}{\epsilon}))$ (quadratic rate)	superlinear rate, <i>n</i> -step quadratic rate (<i>n</i> steps are as effective as one Newton step)	superlinear rate, <i>n</i> -step quadratic rate (<i>n</i> steps are as effective as one Newton step)

	Barrier method	Primal-dual IPM	ADMM	Coord desc
Criterion	doubly smooth f	doubly smooth f	block separable,	smooth +
			f(x,z) =	component-
			g(x) + h(z)	wise separable
Constraints	,	doubly smooth	equality con-	component-
	h_i (ineq con-	h_i (ineq con-	straints (al-	wise separable
	straints)	straints)	ways) & ineq	constraints
			constraints	
			(sometimes)	
Opti pa-	inner loop: fixed	line search for	fixed aug-	none!
rameters	step size or use	step size &	mented La-	
	line search, outer	diverging barrier	grange parame-	
	loop: diverging	parameter	ter (theory), or	
	barrier parameter		varied by itera-	
			tion (practice)	
Iteration	expensive to very	moderate to	cheap to ex-	cheap to expen-
cost	expensive (one	expensive (one	pensive (one	sive (one iter-
	iteration solves	iteration per-	iteration solves	ation performs
	one smoothed	forms one	two subprob-	a full cycle
	problem, by	Newton step)	lems, makes a	of component
	Newton)	1	dual step)	minimizations)
Rate	$O(\log(\frac{1}{\epsilon}))$	$O(\log(\frac{1}{\epsilon}))$	not known	not known
	(both in terms		in general,	in general,
	of iterations and		but known in	but known in
	Newton steps)		special cases;	special cases;
			practically tends	practically tends
			to behave like	to behave faster
			a first-order	than first-order
			method	methods