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I spent this recitation reviewing duality theory, and trying to provide a coherent view of
what we did and why we did it.

1 The primal and dual problems

The core idea of duality is that for any general optimization problem, called a primal problem,
we can construct a second optimization problem, called the dual problem, which is in some
sense equivalent to the original problem.

Primal problem:

f ∗ = min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i ∈ 1, ...,m

lj(x) ≤ 0, j ∈ 1, ..., p

Dual problem:

g∗ = max
u∈Rm,v∈Rp

g(u, v)

subject to u ≥ 0

You can think about duality as trying a ’different perspective’ on a question, and it has
exactly the advantages you expect a different perspective to bring:

• The dual problem might be simpler to solve than the primal problem. e.g. the dual
often has simpler constraints than the primal

• The dual problem might be faster to solve than the primal problem. e.g. the dual might
have fewer variables than the primal, or be better conditioned, leading to optimization
algorithms converging faster.

1



• The dual formulation might bring new insights into the primal solution (might help
’characterize’ the primal solution). etc.

Weak and Strong Duality

But what do we mean by ’equivalent problems in some sense’? Well, under the most gen-
eral assumptions (=we don’t know anything about f, f could even be non-convex), we are
guaranteed by construction of the dual (we’ll see below) that g∗ ≤ f ∗, in other words that
solving the dual gives us a lower bound on the primal. This is not perfect, but can be useful
in certain applications.

In many cases though, we can say something even stronger. For example, if f, hi are convex
and lj are affine (’Slater’s conditions’), we can say under very weak conditions that strong
duality holds: f ∗ = g∗. This is incredibly powerful, and it’s what makes us be able to
solve the dual to get the primal solution. Let’s now get into the details.

2 Deriving the dual from the primal

You can think of the process of deriving the dual as trying to construct simple lower bounds
on the primal objective, and then choosing as tight a bound as we can in order to get a good
approximation.

Practically, to derive the dual we simply follow the following steps:

1. Write the Lagrangian The Lagrangian is defined as a linear combination of the
original objective f and the constraints hi, lj:

L(x, u, v) = f(x) +
∑
i

uihi(x) +
∑
j

vjlj(x) (1)

where ui ≥ 0. By construction, if C is the constraint set of the primal problem
C = {x : hi(x) ≤ 0, lj(x) = 0}, we have:

f(x) ≥ L(x, u, v),∀x ∈ C

We can see this easily: on C, hs are negative (so u ·hs are negative as well - that’s why
we required u ≥ 0), ls are 0, and thus we’re adding two non-positive quantities to f ,
so we must get an underestimate.

2. Minimize the Lagrangian to get the dual function From above, we have that:

f ∗ = min
x∈C

f(x) ≥ min
x∈C

L(x, u, v),∀u ≥ 0, v

But if minimizing L over C provides a lower bound, minimizing L over all of Rn, an
even greater space, will also provide a (less tight) lower bound. This is a place where
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we can potentially lose a lot of tightness in our bound, but it’s worth it, because it
makes our optimization problem unconstrained, and thus much simpler. In conclusion,
in this step we compute what’s called the dual function:

g(u, v) = min
x∈Rn

L(x, u, v) (2)

To recap, we know that: f ∗ = minx∈C f(x) ≥ g(u, v),∀u ≥ 0, v.

3. Write out the new optimization problem Finally, as we said: if all g(u, v) provide
lower bounds, might as well take the best lower bound. We thus write out the dual
problem:

g∗ = max
u∈Rm,v∈Rp

g(u, v) (3)

subject to u ≥ 0

Equations (1), (2) and (3) are all that’s necessary to derive the dual of a problem. The tricky
part is usually in equation (2): it might be difficult to do the minimization in (2) in closed
form. However, we will see tools which help us do that minimization later (hint: conjugate
functions). For now, let’s see an example.

Example: Entropy Maximization This is an example taken from Boyd [TODO: page].
We wish to minimize the following function (negative entropy):

min
x∈Rn

n∑
i=1

xi log xi

subject to Ax ≤ b

1Tx = 1

Before we even think about duality, take a moment to think about algorithms we’ve learned
that could tackle this problem. Really, the only way we know how to approach constrained
problems is using some sort of projected e.g. gradient descent. The issue though is that the
constraints are very hard to project onto: we don’t know how to project either on a general
polyhedra (Ax ≤ b) or a probability simplex (1Tx = 1). So in the primal we’re stuck.

How about the dual? Well, first, notice that since entropy is concave (physics, anyone?),
negative entropy will be convex. Further, all the constraints are affine, so we know by Slater’s
conditions that the primal and dual optima will be equal: f ∗ = g∗.

Now let’s compute the dual:

1. Write the Lagrangian L(x, u, v) =
∑n

i=1 xi log xi + uT (Ax− b) + v(1Tx− 1), u ≥ 0

2. Minimize the Lagrangian to get the dual function We minimize the Lagrangian,
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as always, by taking the derivative and setting it to zero:

0 =
d

dxi
L(x, u, v) = log xi + xi

1

xi
+ uTAi + vi = log xi + uTAi + vi + 1

xi = e−u
TAi−vi−1

Once we got the optimal x, we plug it back into L(x, u, v) to get g(u, v):

g(u, v) =
n∑
i=1

[xi(−uTAi − vi − 1) + uT (Aixi − bi) + vxi]− v

= −uT b− v −
n∑
i=1

xi

= −uT b− v − e−vi−1
n∑
i=1

e−u
TAi

3. Write out the new optimization problem We can now write the dual problem:

g∗ = max
u∈Rm,v∈Rp

−uT b− v − e−vi−1
n∑
i=1

e−u
TAi

subject to u ≥ 0

Ok, so the primal was hard, how about the dual? Well, the dual is trivial! It’s a convex
optimization problem with smooth objective and a trivial constraint (u ≥ 0). So we can
easily apply projected gradient descent, solve the dual, and recover the primal objective
value!

One little observation though: we now know how to compute f ∗, but we still don’t know how
to compute x∗. We’ll see that coming up next though, through the KKT conditions!

3 Tools to make deriving the dual easier: conjugate

functions

The conjugate function definition might seem slightly arbitrary in the beginning, but it arrises
very naturally from duality. To see that, take a very general optimization problem:

f ∗ = min
x∈Rn

f(x)

subject to Ax = b

and try to compute its dual. As usual, we first compute the Lagrangian:

L(x, u) = f(x) + uT (b− Ax)
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and then minimize it to get the dual:

g(u) = min
x
L(x, u) = uT b+ min

x
(f(x)− (ATu)Tx)

= uT b−max
x

((ATu)Tx− f(x))

The structure maxy(y
Tx−f(x)) is what we call the conjugate function f ∗(y). As we can see,

it appears regularly in duality (in this case y = ATu), so it’s clearly worth understanding
better, and deriving rules about how it behaves. What people do is that they:

• Derive the conjugates of important functions (e.g. the conjugate of a norm ||x|| is
always I{z:||z||∗≤1}(y))

• Derive rules for how conjugation works with basic operations (e.g. [f(ax)]∗ = f ∗(x
a
),

+wikipedia has a whole table of them)

Once they have those two building blocks, they can easily take more complex looking prob-
lems ([||ax||1+||bx||∞]∗?), identify the components (some norms, and some basic operations),
and modularly solve the problem. Let’s see how this works in a few examples!

Example: L-1 norm We want to derive the dual problem of the following primal:

min
x
||x||1

subject to Ax = b

This might have looked scary once, but see how easy it is now! From above:

g(u) = uT b− (|| · ||1)∗(ATu)

= uT b− I{z:||z||∞≤1}(ATu)

So the dual is:

max
u

uT b

subject to ||ATu||∞ ≤ 1

Example: Trace norm Again, we derive the dual problem of the following primal:

min
X
||X||∗

subject to Tr(ATX) = b

Notice here that we used Tr(ATX) =< A,X >, the inner product between two matrices, to
express a linear equation in the matrix variable X. Again, if we just look at this problem, it
seems very hard to solve with no extra tools. Let’s take the dual though! As before:

g(u) = ub− (|| · ||∗)∗(uA)

= ub− I{z:||z||op≤1}(uA)
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So the dual problem is:

max
u

ub

subject to ||uA||op ≤ 1

Well, this is trivial to solve:

|u| ≤ 1

||A||op
=

1

σ1(A)

so u∗ = sign(b)
σ1(A)

, g∗ = |b|
σ1(A)

.

To recap, we took a primal problem we didn’t know how to solve, we did one line of calcu-
lations based on knowing properties of the conjugate functions, and we got a dual problem
which we knew how to solve in closed form! Neat, aye? :)

There is only one snag. Yes, we know f ∗ = g∗, but we still don’t know X∗. How do we get
X∗? Well, here is where the KKT conditions help!

4 KKT Conditions

You can get an intuitive grasp of where the KKT conditions come from by looking at how
we derived the dual problem. As we saw in Section 2, we derived the dual problem by
constructing a string of lower bounds on f ∗:

f ∗ = min
x∈C

f(x) ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) = g(u, v),∀u ≥ 0, v

In particular:

f ∗ = min
x∈C

f(x) ≥ min
x∈C

L(x, u∗, v∗) ≥ min
x∈Rn

L(x, u∗, v∗) = g(u∗, v∗) = g∗

We can trivially see then that we can have strong duality f ∗ = g∗ if and only if all those
inequalities are actually equalities. In other words, iff the following hold:

• [stationarity] x∗ minimizes the Lagrangian at u∗, v∗ (the 2nd inequality):

0 ∈ ∂f(x∗) +
∑
i

u∗ihi(x
∗) +

∑
j

v∗j lj(x
∗)

• [complementary slackness] Lagrangian is equal to f on C (the 1st inequality), so:

u∗ihi(x
∗) = 0,∀i

• [primal and dual feasibility] hi(x
∗) ≤ 0, lj(x

∗) = 0 for all i, j, and u ≥ 0
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As with duality, there are many ways the KKT conditions come in useful. We can:

• Directly solve the KKT conditions to get the primal and dual solutions (x∗, u∗, v∗). We
saw this in class when we wrote the KKT conditions for: minx

1
2
xTQx, subject to Ax =

0. (Lecture 13, Slide 13, yayks!)

• Solve the dual, get u∗, v∗, plug them back in the Lagrangian, and now minimize the
Lagrangian to get x∗. This addresses exactly our problem above: until now, we only
knew how to use the dual problem to get f ∗, not x∗. We now have a recipe for how to
recover x∗ from the solutions of the dual problem. We’ll see an example below!

• Use the KKT conditions to characterize x∗.

Example: Trace norm Recall the following trace norm problem:

min
X
||X||∗

subject to Tr(ATX) = b

We derived the dual above as:

max
u

uT b

subject to ||uA||op ≤ 1

And determined that the optimal solution is: u∗ = sign(b)
σ1(A)

, g∗ = |b|
σ1(A)

. We can now plug u∗

in the stationarity condition to say that X∗ minimizes:

L(X, u∗) = ||X||∗ + u∗(b− Tr(ATX)) = ||X||∗ +
sign(b)

σ1(A)
(b− Tr(ATX))

This is now an unconstrained optimization problem so we can apply any algorithm (e.g.
sub-gradient descent) to solve it, and recover X∗!

To recap all that was said:

• Duality provides a new perspective on an optimization problem.

• We can use the dual problem to recover f ∗, or to get extra insights.

• We can use the KKT conditions to recover x∗, or to get extra insights.

• You should feel at home with: Lagrangians, dual function, dual problem, conjugate
functions, and the KKT conditions. They come up everywhere!

The recitation also covered a geometric explanation of duality, but it’s easier to follow with
a whiteboard than written, so please check the video of the recitation and/or Boyd, pages
232-233. Enjoy!
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