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10.1 Motivation

From previous lectures, we know that steepest decent method is very slow. The Newton method is fast. But
the computation of inverse of the Hessian matrix is very expensive. Can we find a method between these
two?

Conjugate direction method can be regarded as being between the method of steepest decent and Newton’s
method.

10.2 Conjugate Direction Methods

The goal includes two folds. (1)Accelarate the convergence rate of steepest decent. (2)Avoiding the high
computational cost Newton’s method

10.2.1 Definition[Q-conjugate directions]

Let Q be a symmetric matrix
d1, d2, ..., dk vectors (di ∈ Rn, di 6= 0) are Q-orthogonal (conjugate) w.e.r Q, if

dTi Qdj = 0, ∀i 6= j

note In the application we consider, the matrix Q will be positive definite. But this is not inherent in the
basc definition.

If Q=0, any two vectors are conjugate.
If Q=I, conjugacy is equivalent to the usual notion of orthogonality.

10.2.2 Linear Independency Lemma

lemma Let Q be positive definite.
If d1, d2, ..., dk vectors are Q-conjugate, then they are linearl independent.

10-1



10-2 Lecture 10: September 26

proof by contradiction If dk = α1d1 + ...+ αk−1, then

0 < dTkQdk = dTkQ(α1d1 + ...+ αk−1dk−1) = α1d
T
kQd1 + ...αk−1d

T
kQdk−1 = 0

10.2.3 The importance of Q-conjugancy

For quadratic problem, our goal is to solve

arg min
x∈Rn

1

2
xTQx− bTx

Assume Q is positive definite
The first order differiential of the objective function equals to 0 for the minimizer.
So the unique solution to this problem is the solution to

Qx = b, x ∈ Rn

Let x∗ denote the solution. Let d0, d1, ..., dn−1 vectors be Q-conjugate. Since d0, d1, ..., dn−1 vectors are
independent,

x∗ = α0d0 + ...+ αn−1dn−1

Therefore, dTi Qx
∗ = dTi Q(α0d0 + ...+ αn−1dn−1) = αid

T
i Qdi

⇒ αi =
dTi Qx

∗

dTi Qdi
=

dTi b

dTi Qdi

we don’t need to know x∗ to get αi

x∗ =

d−1∑
i=0

αidi =

d−1∑
i=0

dTi b

dTi Qdi
di

We can see that there is no need to do matrix inversion. We only need to calculate inner product.

10.2.4 Conjugate Direction Theorem

The expansion for x∗ can be considered to be the result of an iterative process of n steps where at the ith
steps αidi is added. This can be generalized further such a way that the starting point of the iteration can
be arbitery x0

We introduce the conjugate direction theorem here.

Theorem[Conjugate Direction Theorem]

Let d0, d1, ..., dn−1 vectors be Q-conjugate.
x0 ∈ Rn be an arbitery starting point.

xk+1 = xk + αkdk
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gk = Qxk − b

αk = −−g
T
k dk

dTkQdk
= − (Qxk − b)T dk

dTkQdk

Then after n steps, xn = x∗

Proof
Since {d0, d1, ..., dn−1} vectors are independent.
⇒ x∗ − x0 = α0d0 + ...+ αn−1dn−1 for some α0, ..., αn−1

Using the xk+1 = xk + αkdk update rules, we have

x1 = x0 + α0d0

x2 = x0 + α0d0 + α1

xk = x0 + α0d0 + α1 + ...αk−1dk−1

xn = x0 + α0d0 + α1d1 + ...+ αn−1dn−1 = x∗

span

Therefore, it’s enough to prove that with these αk values we have

αk = − gTk dk
dTkQdk

We already know

x∗ − x0 = α0d0 + ...+ αn−1dn−1

xk − x0 = α0d0 + ...+ αk−1dk−1
span

Therefore,

dTkQ(x∗ − x0) = dTkQ(α0d0 + ...+ αn−1dn−1 = αkd
T
kQdk

⇒ αk =
dTkQ(x∗ − x0)

dTkQdk

dTkQ(xk − x0) = dTkQ(α0d0 + α1d1 + ...+ αk−1dk−1) = 0

dkQ(x∗ − x0) = dTkQ(x∗ − xk + xk − x0) = dTkQ(x∗ − xk)

αk =
dTkQ(x∗ − x0)

dTkQdk
=
dTkQ(x∗ − xk)

dTkQdk
= − dTk gk

dTkQdk
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Another motivation for Q-conjugacy
Our goal is:

arg min
x∈Rn

1

2
xTQx− bTx

x− x0 = α0d0 + ...+ αn−1dn−1 for some {αi}n−1i=0 ∈ R Therefore,

f(x) =
1

2
[x0+

n−1∑
j=0

αjdj ]
TQ[x0+

n−1∑
j=0

αjdj ]−bT [x0+

n−1∑
j=0

αjdj ]f(x) = c+

n−1∑
j=0

1

2
[x0+αjdj ]

TQ[x0+αjdj ]−bT [x0+αjdj ]

The optimization problem is transformed into a n separate 1-dimensional optimization problems

10.2.5 Expanding Subspace Theorem

Let Bk = span(d0, ..., dk−1) ⊂ Rn

We will show as the method of conjugate directions progresses each xk minimizes the objective f(x) =
1
2x

TQx− bTx both over x0 +Bk and xk−1 + αdk−1, α ∈ R.That is

xk = arg min
x=xk−1+αdk−1,α∈R

1

2
xTQx− bTxxk = arg min

x=x0+Bk

1

2
xTQx− bTx

Theorem[Expanding Subspace Theorem]
Let {di}n−1i=0 be a sequence of Q-conjugate vectors in Rn, x0 ∈ Rn arbitary

xk+1 = xk + αkdk

αk = − gTk dk
dTkQdk

⇒ xk = arg min
x=xk−1+αdk−1,α∈R

1

2
xTQx− bTx

xk = arg min
x=x0+Bk

1

2
xTQx− bTx

Proof
It’s enough to show that xk minimizes f on x = x0 +Bk since it contains the line:x = xk−1 + αdk−1 (by the
definition of Bk)

Since f is strictly convex, it’s enough to show that gk = f
′
(xk) is orthogonal to Bk

We prove gk ⊥ Bk by induction
k=0: B0 is empty set.
Assume that gk ⊥ Bk and prove that gk+1 ⊥ Bk+1

By definition,

xk+1 = xk + αkdkgk = Qxk − b

Therefore,



Lecture 10: September 26 10-5

gk+1 = Qxk+1 − b
= Q(xk + αkdk)− b
= (Qxk − b) + αkQdk

= gk + αkQdk

span

First, let us prove that gk+1 ⊥ dk We have proved gk+1 = gk + αkQdk
By definition,

αk = − gTk dk
dTkQdk

Therefore,

dTk gk+1 = dTk (gk + αkQdk) = dTk − dTk gk = 0

gk+1 ⊥ dk

Now let us prove that gk+1 ⊥ di, i < k
Since

gk+1 = gk + αkQdk

gk ⊥ Bk = span(d0, ..., dk−1)

Therefore,

dTi gk+1 = dTi (gk + αkQdk) = dTi gk + αkd
T
i Qdk = 0

gk+1 ⊥ di,∀i < k

So far we have proved that gk+1 ⊥ Bk+1, where Bk+1 = span(d0, ..., dk)

Corollary of Exponential subspace theorem
corollary

gk ⊥ Bk = span(d0, ..., dk−1)

gTk di = 0,∀0 ≤ i ≤ k
∅ = B0 ⊂ ... ⊂ Bk ⊂ Bn = Rn

span

since xk minimizes f over x0 +Bk. ⇒ xn is the minimum of f in Rn
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10.3 Conjugate gradient method

The conjugate gradient method isa conjugate direction method

Selects the successive direction vectors as a conjugate version of the successive gradients obtained as the
method progress

The conjugate directions are not specified beforehandm but rather are determined sequentially at each step
of the iteration

10.3.1 Description and advantage

So far given d0, . . . , dn−1, we already have an update rule for αk.

αk = − gTKdk
dTKQdk

The problem is how should we choose vectors d0, . . . , dn−1.

The conjugate gradient method is the conjugate direction method that is obtained by selecting the successive
direction vectors as a conjugate version of the successive gradients obtained as the method progresses. Thus,
the directions are not specified beforehand, but rather are determined sequentially at each step of the
iteration.

There are three primary advantages to this method of direction selection.

1. Unless the solution is attained in less than n steps, the gradient is always nonzero and linearly inde-
pendent of all previous direction vectors.

2. A more important advantage of the conjugate gradient method is the especially simple formula that
is used to determine the new direction vector. This simplicity makes the method only slightly more
complicated than steepest descent.

3. Because the directions are based on the gradients, the process makes good uniform progress toward
the solution at every step. This is in contrast to the situation for arbitrary sequences of conjugate
directions in which progress may be slight until the final few steps.

10.3.2 Algorithm

Let x0 ∈ Rn be arbitrary.
d0 = −g0 = b−Qx0

αk = − gT dk
dTkQdk

xk+1 = xk + αkdk

gk = Qxk − b

dk+1 = −gk+1 + βkdk

βk =
gTk+1Qdk

dTkQdk
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In the algorithm the first step is identical to a steepest descent step; each succeeding step moves in a direction
that is a linear combination of the current gradient and the preceding direction vector. The attractive feature
of the algorithm is the simple formula for updating in the direction vector. The method is only slightly more
complicated to implement than the method of steepest descent but converges in a finite number of steps.

Theorem 10.1 The conjugate gradient algorithm is a conjugate direction method. If it does not terminate
at xk, then

a) span(g0, g1, . . . , gk) = span(g0, Qg0, . . . , Q
kg0)

b) span(d0, d1, . . . , dk) = span(g0, Qg0, . . . , Q
kg0)

c) dTkQdi = 0,∀i < k

d) αk =
gTk gk
dTkQdk

e) βk =
gTk+1gk+1

gTk gk

Proof: We first prove a), b) and c) simultaneously by induction. Clearly, they are true for k = 0. Now
suppose they are true for k, we show that they are true for k + 1. We have

gk+1 = gk + αkQdk

By the induction hypothesis both gk and Qdk belong to span(g0, Qg0, . . . , Q
k+1g0), the first by a) and

the second by b). Thus gk+1 ∈ span(g0, Qg0, . . . , Q
k+1g0). Furthermore gk+1 /∈ span(d0, d1, . . . , dk) =

span(g0, Qg0, . . . , Q
kg0) since otherwise gk+1 = 0, because for any conjugate direction method gk+1 is or-

thogonal to span(d0, d1, . . . , dk)]. (The induction hypothesis on c) guarantees that the method is a conjugate
direction method up to xk+1.) Thus, finally we conclude that

span(g0, g1, . . . , gk) = span(g0, Qg0, . . . , Q
kg0)

which proves a).

To prove b) we write

dk+1 = −gk+1 + βkdk,

and b) immediately follows form a) and the induction hypothesis on b).

Next, to prove c we have

dTk+1Qdi = −gTk+1Qdi + βkd
T
kQdi.

For i = k the right side is zero by definition of βk. For i < k both terms vanish. The first term vanishes since
Qdi ∈ span(d0, d1, . . . , dk+1), the induction hypothesis which guarantees the method is a conjugate direction
method up to xk+1, and by the Expanding Subspace Theorem that guarantees that gk+1 is orthogonal to
span(d0, d1, . . . , dk+1). The second term vanishes by the induction hypothesis on c). This proves c), which
also proves that the method is a conjugate direction method.

To prove d) we have

−gTk dk = gTk gk − βk−1gTk dk−1,

and the second term is zero by the Expanding Subspace Theorem.
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Finally, to prove e) we note that gTk+1gk = 0, because gk ∈ span(d0, d1, . . . , dk) and gk+1⊥span(d0, d1, . . . , dk).
Thus since

Qdk =
1

αk
(gk+1 − gk).

We have

gTk+1Qdk =
1

αk
gTk+1gk+1.

10.4 Extension to non-quadratic problem

10.4.1 Description

Our goal is to
min
x∈Rn

f(x)

We will make quadratic approximation gk = ∇f(xk) and Q = ∇2f(xk). using these associations, reevaluated
at each step, all quantities necessary to implement the basic conjugate gradient algorithm can be evaluated.
If f is quadratic, these associations are identities, so that the general algorithm obtained by using them is
a generalization of the conjugate gradient scheme. This is similar to the philosophy underlying Newtons
method where at each step the solution of a general problem is approximated by the solution of a purely
quadratic problem through these same associations.

When applied to nonquadratic problems, conjugate gradient methods will not usually terminate within n
steps. It is possible therefore simply to continue finding new directions according to the algorithm and
terminate only when some termination criterion is met. Therefore after n steps, we can restart the process
from this point and run the algorithm for another n steps.

10.4.2 Algorithm

1. Starting at x0 and compute g0 = ∇f(x0) and set d0 = −g0.

2. For k = 0, 1, . . . , n− 1 :

a) Set xk+1 = αkdk where αk = − gTk dk
dTk [∇2f(xk)]dk

b) Compute gk+1 = ∇f(xk+1)

c) Unless k = n− 1, set dk+1 = −gk+1 + βkdk where βk =
gTk+1[∇f(xk)]dk

dTk [∇2f(xk)]dk

3. Replace x0 by xn and go back to step 1. Until converge.

10.4.3 Properties of CGA

An attractive feature of the algorithm is that, just as in the pure form of Newtons method, no line searching
is required at any stage. Also, the algorithm converges in a finite number of steps for a quadratic problem.
The undesirable features are that F (xk) must be evaluated at each point, which is often impractical, and
that the algorithm is not, in this form, globally convergent.
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10.5 Line search method

Two of the line search method are FletcherReeves method and Ploak-Ribiere method. This algorithm is
quite similar to the Conjugate gradient method. The slight differences are in step 2 a) and 2 c) above.

10.5.1 Algorithm for Fletcher Reeves method

1. Starting at x0 and compute g0 = ∇f(x0) and set d0 = −g0.

2. For k = 0, 1, . . . , n− 1 :

a) Set xk+1 = αkdk where αk = arg minα f(xk + αdk)

b) Compute gk+1 = ∇f(xk+1)

c) Unless k = n− 1, set dk+1 = −gk+1 + βkdk where βk =
gTk+1gk+1

gTk gk

3. Replace x0 by xn and go back to step 1. Until converge.

Firstly Fletcher-Reeves method is line search method when evaluating α and there is no close form solution
normally. Secondly the Hessian is not used in the algorithm. Also in the quadratic case it is identical to the
original conjugate direction algorithm.

10.5.2 Algorithm for Polak Ribiere method

Polak-Ribiere method is quite similar to Fletcher-Reeves method. The only difference occurs when evaluating
βk.

1. Starting at x0 and compute g0 = ∇f(x0) and set d0 = −g0.

2. For k = 0, 1, . . . , n− 1 :

a) Set xk+1 = αkdk where αk = arg minα f(xk + αdk)

b) Compute gk+1 = ∇f(xk+1)

c) Unless k = n− 1, set dk+1 = −gk+1 + βkdk where βk = (gk+1−gk)T gk+1

gTk gk

3. Replace x0 by xn and go back to step 1. Until converge.

Again this leads to a value identical to the standard formula in the quadratic case. Experimental evidence
seems to favor the PolakRibiere method over other methods of this general type.
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10.6 Convergence

Global convergence of the line search methods is established by noting that a pure steepest descent step is
taken every n steps and serves as a spacer step. Since the other steps do not increase the objective, and in
fact hopefully they decrease it, global convergence is assured. Thus the restarting aspect of the algorithm
is important for global convergence analysis, since in general one cannot guarantee that the directions dk
generated by the method are descent directions.

The local convergence properties of both of the above, and most other, nonquadratic extensions of the
conjugate gradient method can be inferred from the quadratic analysis. Since one complete cycle solves a
quadratic problem exactly just as Newtons method does in one step, we expect that for general nonquadratic
problems there will hold ‖xk+n − x∗‖ ≤ c‖xk − x∗‖2 for some c and k = 0, n, 2n, 3n, . . .. This can indeed be
proved, and of course underlies the original motivation for the method. For problems with large n, however,
a result of this type is in itself of little comfort, since we probably hope to terminate in fewer than n steps.

10.7 summary

• Conjugate Direction Methods.

- conjugate directions

• Minimizing quadratic functions

• Conjugate Gradient Methods for nonquadratic functions

- Line search methods

1. FletcherReeves method

2. PolakRibiere method
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