
10-725: Optimization Fall 2013

Lecture 10: October 1
Lecturer: Barnabas Poczos/Ryan Tibshirani Scribes: Jennifer King, Yitong Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Conjugate Direction Methods

Goal: We want to accelerate steepest descent without needing to use the inverse of the Hessian (as Newtons
method does).

The methods were originally developed to solve the following problem:

min
x∈Rn

1

2
xTQx− bTx⇔ Qx = b, x ∈ Rn

where Q � 0 and is symmetric. We can say the vectors {d1, ..., dk} are Q-orthogonal (Q-conjugate directions)
if and only if

dTi Qdj = 0 ∀i 6= j

In the previous lecture we saw a proof of the following Lemma:

Lemma 10.1 If Q � 0 and {d1, ..., dk} are Q-conjugate then they are linearly independent.

Using this lemma we can write:

x∗ = α0d0 + ...+ αkdk

where

αi =
dTi b

dTi Qdi

The conjugate direction theorem means now we can do iterations to solve for x∗:

xk+1 = xk + akdk

ak = − gTk dk
dTkQdk

that x∗ = xn =⇒ convergence in n steps. So we can say that given {d1...dk} Q-conjugate direction vectors
we can solve f(x) = 1

2x
TQx− bTx without the need for the Hessian inverse.

10-1



10-2 Lecture 10: October 1

10.2 Conjugate Gradient Method

Now we want to know how to generate the Q-conjugate directions: {d1, ..., dk}. The following describes the
algorithm for doing this in the quadratic case (f(x) = 1

2x
TQx− bTx and g(x) = ∇f(x) = Qx− b):

• Let x0 ∈ Rn be an arbitrary start point.

• d0 = −g0 = b−Qx0

• Iterate:

1. αk =
−gTk dk
dTkQdk

2. xk+1 = xk + αkdk

3. gk+1 = Qxk − b

4. βk =
gTk+1Qdk

dTkQdk

5. dk+1 = −gk+1 + βkdk

Note that unlike Newton’s method, no matrix inversion is necessary.

Theorem 10.2 Conjugate Gradient Theorem - The conjugate gradient algorithm is a conjugate direction
method. The following properties hold:

1. span (g0, ..., gk) = span
(
g0, Q

1g0, ..., Q
kg0

)
2. span (d0, ..., dk) = span

(
g0, Q

1g0, ..., Q
kg0

)
3. dTkQdi = 0∀i 6= k

4. αk =
gTk gk
dTkQdk

5. βk =
gTk+1gk+1

gTk gk

10.2.1 Extension to non-quadratic case

Our goal is to modify the algorithm so that it can be generalized to non-quadratic functions. If we use line
search instead to update αk, then based on the above properties only gk depends on Q. When dealing with
non-quadratic functions, we can substitute in the gradient of our function:

gk = ∇f(xk)

If we do not wish to use line search to find αk we can use the Hessian of our function for Q:

Qk = ∇2f(xk)

Now we can write a generalized algorithm:

• Step 1. x0 ∈ Rn, g0 = ∇(x0), d0 = −g0

• Step 2. Iterate n times:



Lecture 10: October 1 10-3

1. αk =
−gTk dk

dTk∇2f(xk)dk

2. xk+1 = xk + αkdk

3. gk+1 = ∇f(xk+1)

4. βk =
gTk+1∇

2f(xk)dk

dTk∇2f(xk)dk

5. dk+1 = −gk+1 + βkdk

• Step 3. Go back to Step 1. and use xn as the new x0

This generalized algorithm exhibits the following properties:

• No line search is required

• For the quadratic problem, convergence is achieved in a finite number of steps.

• The Hessian must be evaluated at every step.

• Not globally convergent.

10.2.2 Fletcher-Reeves Method

The Fletcher-Reeves method makes two modifications to the algorithm listed above.

1. xk+1 = αkdk where αk = arg minα f(xk + αdk)

2. compute gk+1 = ∇f(xk+1)

3. if k < n− 1 then we compute: dk+1 = −gk+1 + βkdk, and βk =
gTk+1gk+1

gTk gk
(equivalent to Hessian way)

These modifications introduce the need for a line search. However, the Hessian is no longer needed.

10.2.3 Polak-Ribiere Method

The Polak-Ribiere method uses the same search to find αk as the Fletcher-Reeves method, but modifies the
βk update rule:

βk =
(gk+1 − gk)T gk+1

gTk gk

There is not theoretical proof behind this, but in application it has shown to work better. The intuition
behind why is that it uses more moments. Under some conditions, the convergence rate that has been shown
is the following:

‖xk+n − x∗‖ ≤ c‖xk − x∗‖2

In other words, after n steps the error will have a quadratic rate. Additionally, under some conditions, line
search methods are globally convergent.



10-4 Lecture 10: October 1

10.3 Quasi-Newton Methods

As we noted earlier, one big problem with Newtons method is that it requires the inverse of the Hessian:

xk+1 = xk − αk
[
∇2f(xk)

]−1∇f(xk)

The goal behind quasi-newton methods is to develop approximations of that inverse. Then we can modify
the update rule for Newtons method to the following:

xk+1 = xk − αkSk∇f(xk)

Where αk > 0 and Sk is the approximation of the inverse. We note that if Sk = I then this update is the

gradient descent update. If Sk =
[
∇2f(xk)

]−1
then this update is exactly Newtons update.

Lemma 10.3 Sk � 0 =⇒ modified Newton step is a descent direction.

Proof: ∇f(xk)T (xk+1 − xk) = ∇f(xk)T (−αkSk∇f(xk) < 0

Lets look at the quadratic function: f(x) = 1
2x

TQx− bTx. We can say:

gk = Qxk − b = ∇f(xk)

xk+1 = xk − αkSkgk

Lemma 10.4
αk = min

α
f(xk − αSkgk)

=⇒ αk =
gTk Skgk

gTk SkQSkgk

Proof:

f(xk+1) =
1

2
xTk+1Qxk+1 − bTxk+1

=
1

2
(xk − αkSkgk)TQ(xk − αkSkgk)− bT (xk − αkSkgk)

0 =
∂f(xk+1)

∂αk

= −gTk SkQ(xk − αkSkgk) + bTSkgk

gTk SkQxk − gTk Skb = αkg
T
k SkQSkgk

gTk Sk(Qxk − b) = αkg
T
k SkQSkgk

gTk SkgK = αkg
T
k SkQSkgk

αk =
gTk Skgk

gTk SkQSkgk

Examining the convergence rate for the quadratic case we see the error is:

ε(xk) =
1

2
(xk − x∗)TQ(xk − x∗)



Lecture 10: October 1 10-5

Then at every step k:

ε(xk+1) ≤
(
Bk − bk
Bk + bk

)2

ε(xk)

where Bk and bk are the largest and smallest eigenvalues for SkQ. We note that S−1k close to Q =⇒ fast
convergence because Bk will be close to bk.

10.3.1 Classical Modified Newton

The classical modified newtons method uses the Hessian at x0 to approximate the Hessian at every step:

∇2f(xk) = ∇2f(x0) , ∀k

10.3.2 Constructing the Inverse of the Hessian

The following sections describe various methods for constructing an approximation to the inverse of the
Hessian. First we introduce the following notation which will be used throughout the remainder of the
section:

gk+1 = ∇f(xk+1)

pk = xk+1 − xk

Q(xk) = ∇2f(xk)

qk = gk+1 − gk = ∇f(xk+1)−∇f(xk) ≈ Q(xk)pk

For the quadratic case gk = ∇f(xk) = Qxk − b and qk = gk+1 − gk = Q(xk+1 − xk) = Qpk. If we let
H = Q−1 then:

[q0, q1, ..., qn−1] = Q [p0, ..., pn−1]

=⇒ Q = [q0, ..., qn−1] [p0, ..., pn−1]
−1

=⇒ H [q0, ..., qn−1] = [p0, ..., pn−1]

Here {p0, ..., pn−1} are linearly independent, and {q0, ..., qn−1} are known. Thus we can say that we can
construct Hk which approximates H based on data from the first k steps.

10.3.2.1 Symmetric Rank One Correction (SR1)

We want:

Hk+1 [q0...qk] = [p0...pk]

Let

Hk+1 = Hk + akzkz
T
k

where ak ∈ R and zk ∈ Rn. Putting these two equations for Hk+1 together we get the following theorem:

Theorem 10.5

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

qTk (pk −Hkqk)



10-6 Lecture 10: October 1

Proof: Given [p0...pk] = Hk+1 [q0...qk] and Hk+1 = Hk + akzkz
T
k :

pk = Hk+1qk = (Hk + akzkz
T
k )qk = Hkqk + akzkz

T
k qk

pk −Hkqk = akzkz
T
k qk

(pk −Hkqk)(pk −Hkqk)T = a2k(zkz
T
k qkq

T
k zkz

T
k )

(pk −Hkqk)(pk −Hkqk)T

ak
= akzk(zTk qk)2zTk

(pk −Hkqk)(pk −Hkqk)T

ak(zTk qk)2
= akzkz

T
k

So we can say:

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

ak(zTk qk)2

Now lets look at:

qTk pk = qTkHk+1qk = qTk (Hk + akzkz
T
k )qk

= qTkHkqk + akq
T
k zkz

T
k qk

= qTkHkqk + ak(qTk zk)2

ak(qTk zk)2 = qTk (pk −Hkqk)

Putting the two together we get:

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

qTk (pk −Hkqk)

We can now construct the SR1 algorithm:

1. αk = arg minα f(xk − αHkgk)

2. gk = ∇f(xk)

3. xk+1 = xk − αkHkgk

4. gk+1 = ∇f(xk+1)

5. pk = xk+1 − xk

6. qk = gk+1 − gk

7. Hk+1 = Hk + (pk−Hkqk)(pk−Hkqk)
T

qTk (pk−Hkqk)

We note two potential problems with the update rule in step 7:

• The algorithm can become unstable if gTk (pk −Hkqk) is close to 0.

• There is no guarantee that Hk will be positive definite.



Lecture 10: October 1 10-7

10.3.2.2 Davidson-Fletcher-Powell Method (DFP)

The DFP method attempts to refine the method above and provide a way to guarantee Hk is positive definite
at each iteration. The algorithm is as follows:

• Initialize H0 ∈ Rn×m to be symmetric and positive definite.

• Iterate:

1. dk = −Hkgk

2. αk = arg minα f(xk + αdk)

3. xk+1 = xk + αkdk

4. pk = αkdk

5. gk+1 = ∇f(xk+1)

6. Hk+1 = Hk +
pkp

T
k

pTk qk
− Hkqkq

T
k Hk

qTk Hqk

Now we can say that Hk is positive definite at every iteration. Additionally, if f is quadratic with positive
definite Hessian Q then piQpj = 0 for all 0 ≤ i ≤ j ≤ k. Thus Hk+1Qpj = pj for 0 ≤ j ≤ k. Additionally it
can be shown that Hn = Q−1 for some n.

10.3.2.3 Broyden-Fletcher-Goldfarb-Shanno Method (BFGS)

If we switch pk and qk in the update for H provided by the DFP method we get an update rule for the
Hessian Q:

Qk+1 = Qk +
qkq

T
k

qTk pk
− Qkpkp

T
kQk

pTkQkqk

However, we want the inverse. And with Sherman-Morrison formula:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vtA−1u

we apply it twice and get:

Hk+1 = Hk +

(
1 +

qTkHkqk
pTk qk

)
pkp

T
k

pTk qk
− pkq

T
kHk +Hkqkp

T
k

qTk pk

Then the BFGS algorithm is the following:

• Initialize H0 ∈ Rnxn to a symmetric, positive definite matrix.

• Initialize x0 ∈ Rn, k = 0, gk = ∇(f(xk)).

• Iterate

1. dk = −Hkgk

2. αk = arg minα>0 f(xk + αdk)

3. xk+1 = xk + αkdk

4. pk = αkdk



10-8 Lecture 10: October 1

5. gk+1 = ∇f(xk+1)

6. qk = gk+1 − gk

7. Hk+1 = Hk +
(

1 +
qTk Hkqk
pTk qk

)
pkp

T
k

pTk qk
− pkq

T
k Hk+Hkqkp

T
k

qTk pk

In practice this works better than DFP.


