10-725: Optimization Fall 2013

Lecture 10: October 1
Lecturer: Barnabas Poczos/Ryan Tibshirani Scribes: Jennifer King, Yitong Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Conjugate Direction Methods

Goal: We want to accelerate steepest descent without needing to use the inverse of the Hessian (as Newtons
method does).

The methods were originally developed to solve the following problem:

1
min —27Qx —bTx < Qr =b,x € R"
zER™ 2

where @ >~ 0 and is symmetric. We can say the vectors {dy, ..., di } are @-orthogonal (Q-conjugate directions)
if and only if

T Qd; =0 Yi# j
In the previous lecture we saw a proof of the following Lemma:
Lemma 10.1 If Q > 0 and {d1, ...,dr} are Q-conjugate then they are linearly independent.

Using this lemma we can write:

¥ = apdy + ... + aydy

where
B din
~dTQd;

o2
The conjugate direction theorem means now we can do iterations to solve for x*:
Tpy1 = Tk + agdy

~ grdk
df Qdy,

ap —

that * = x,, = convergence in n steps. So we can say that given {d;...d;} Q-conjugate direction vectors
we can solve f(z) = %mTQx — bT'x without the need for the Hessian inverse.

10-1

10-2 Lecture 10: October 1

10.2 Conjugate Gradient Method

Now we want to know how to generate the Q-conjugate directions: {di,...,dx}. The following describes the
algorithm for doing this in the quadratic case (f(z) = $27Qz — bTz and g(z) = Vf(z) = Qz — b):

o Let ¢y € R" be an arbitrary start point.

e dy=—go=">b—Quo

o Iterate:

. Tgt1 = Tg + apdy

1
2
3. grt1 = Qzp — b
4
5

ﬁ — ng+1Qdk
© PR T AT Qdy

i1 = —Gr+1 + Brdy
Note that unlike Newton’s method, no matrix inversion is necessary.

Theorem 10.2 Conjugate Gradient Theorem - The conjugate gradient algorithm is a conjugate direction
method. The following properties hold:

1. span (go, -, g) = span (go, Q" go, ---, Q" go)

2. span (d07 cey dk) = span (905 ng()’ ey ngo)

3. dEQd; = O0Vi # k

T
_ 9k 9k
4. o = dZQdk

T
_ Yk4+19k+1
5. Br = 9 gw

10.2.1 Extension to non-quadratic case

Our goal is to modify the algorithm so that it can be generalized to non-quadratic functions. If we use line
search instead to update ay, then based on the above properties only gi depends on Q. When dealing with
non-quadratic functions, we can substitute in the gradient of our function:

gk = Vf(zx)
If we do not wish to use line search to find aj we can use the Hessian of our function for Q:
Qr =V f(zk)

Now we can write a generalized algorithm:

e Step 1. g € R", gg = V(x0),do = —go

e Step 2. Iterate n times:

Lecture 10: October 1 10-3

—9i dk

Lo = rie,an

2. Ty = a8 + agdy

3. g1 = Vf(Trt1)
_ gh VP (@) di
4 Br = vazmk)dk
5. dit1 = —gk+1 + Brdy

e Step 3. Go back to Step 1. and use z,, as the new xg
This generalized algorithm exhibits the following properties:

e No line search is required
e For the quadratic problem, convergence is achieved in a finite number of steps.
e The Hessian must be evaluated at every step.

e Not globally convergent.

10.2.2 Fletcher-Reeves Method

The Fletcher-Reeves method makes two modifications to the algorithm listed above.

1. xp11 = agdy where ay = argming, f(zx + ady)

2. compute gri1 =V f(zp41)

T
o+19k+1

3. if k < n —1 then we compute: dgr1 = —gx+1 + Brdk, and By = g’“ngk (equivalent to Hessian way)
Ton

These modifications introduce the need for a line search. However, the Hessian is no longer needed.

10.2.3 Polak-Ribiere Method

The Polak-Ribiere method uses the same search to find «ay, as the Fletcher-Reeves method, but modifies the
B update rule:
(gr+1 — gk)T9k+1

Br =
nggk

There is not theoretical proof behind this, but in application it has shown to work better. The intuition
behind why is that it uses more moments. Under some conditions, the convergence rate that has been shown
is the following:

|24 — 27| < cllzg — 2|2

In other words, after n steps the error will have a quadratic rate. Additionally, under some conditions, line
search methods are globally convergent.

10-4 Lecture 10: October 1

10.3 Quasi-Newton Methods

As we noted earlier, one big problem with Newtons method is that it requires the inverse of the Hessian:

Tyl = T — QO [sz(zk)]_l Vf(xg)

The goal behind quasi-newton methods is to develop approximations of that inverse. Then we can modify
the update rule for Newtons method to the following:

T4+l = Tk — akSka(xk)

Where aj > 0 and Sy is the approximation of the inverse. We note that if Sy = I then this update is the
gradient descent update. If Sy, = [V2 f (xk)} ! then this update is exactly Newtons update.

Lemma 10.3 S; = 0 = modified Newton step is a descent direction.

Proof: Vf(xy)" (xp41 — 1) = V(@) (—anSeV f (k) <0 u

Lets look at the quadratic function: f(x) = %xTQx —bTx. We can say:
gk = Qry — b=V f(x)

Thq1 = Tk — QpSkIk

Lemma 10.4
aj; = min flze — aSkgr)
T
9i Sk 9k
_— =
’ gt SkQSkgrk
Proof:
1 7 T
f(xpy1) = §$k+1Q$k+1 — b Tp41
1 T .
= 5(301@ — apSkgr)” Q(rr — arSkgr) — b" (xr — arSkgr)
0= 9f(2k+1)
80%

= *QESkQ(Ik — apSkgk) + bT' Sy gn
9L SkQy — gt Sib = g SkQSkyr

9i Sk(Qxy, — b) = kg SkQSkgr
9k Sk9x = wgp, SkQSkgx
oy, = TngSkgk
95 SkQSkgr

Examining the convergence rate for the quadratic case we see the error is:

c(ox) = o — 1) Qlax — o)

Lecture 10: October 1 10-5

Then at every step k:

By, — b\ 2
o) < (gt) o)

1

where By and by, are the largest and smallest eigenvalues for Si(). We note that S~ close to ¢ = fast

convergence because By will be close to bg.

10.3.1 Classical Modified Newton

The classical modified newtons method uses the Hessian at xy to approximate the Hessian at every step:

V2 f(z) = V2 f(zo) , Yk

10.3.2 Constructing the Inverse of the Hessian

The following sections describe various methods for constructing an approximation to the inverse of the
Hessian. First we introduce the following notation which will be used throughout the remainder of the
section:

k1 = Vf(Trt1)
Pk = Tk4+1 — Tk
Q(xy) = V2 f (k)
Gk = Grt+1 — 9k = Vf(@rp1) — V(xr) = Q(xr)p
For the quadratic case g = Vf(ar) = Qi — b and ¢ = gr+1 — g = Q(Tr+1 — k) = Qpi. If we let

H = Q! then:
[QO7 q1, "'7qn71] = Q [PO; "'7pn71]

-1
— Q = [QO» "'7qn71] [p()v "'7pn71]

- H[QO7 "'7qn—1] - [p07 "'7pn—1]

Here {pg,...,pn—1} are linearly independent, and {qo,...,¢n—1} are known. Thus we can say that we can
construct Hj which approximates H based on data from the first k steps.

10.3.2.1 Symmetric Rank One Correction (SR1)

We want:
Hj11[qo---qr] = [po---pk)

Let
Hyyy = Hi + akzkz,{

where a;, € R and 2, € R™. Putting these two equations for Hy41 together we get the following theorem:

Theorem 10.5
(pr — Hiaqr) (px — Hrgr)"

Hypi = Hp +
- ai (px — Hrqr)

10-6

Proof: Given [po...px] = Hg+1 [qo-..qx] and Hy1 = Hy + apziz] :
Pk = Heprqe = (Hi + awzi2i)ae = Hiqr + arzrzf, ar

T
pr — Hipqr = arzipzy, gk
T 2 T T_.T
) = ai(2k2) Qi 212)

)T

(P — Hrqr)(px — Hiqr

(pr — Hiqr) (px — Hrqy
ay

= akzk(z,zqk)Qz,z
(px — Hreaqr) (pk — Heqr)”
ak (2 qx)?

= akzkzg

So we can say:
(px — Hiqr) (px — Heqr)”

Hyp = Hp +
" ak (2 qr)?

Now lets look at:
ar Pk = @ Hiraar = af (He + apzizi)qr

= qf Hyqr + arqi 212t ar
= g} Hyqr, + ar(qf 21)?
ar(at zx)? = at (pr, — Hyq)

Putting the two together we get:

(px — Hiqw) (px — Heqr)”

Hypi = Hp +
- ai (px — Hrqr)

We can now construct the SR1 algorithm:

1. ap = argmin,, f(zr — aHkgr)
2. gr = Vf(zk)

3. Tpy1 =z — o Higr

4. grt1 = Vf(@pt1)

9. Pk = Th41 — Tk

6. gk = Gk+1 — Gk

_ (Pr—Hiqr) (P —Hirqu)”
7. Hk+1 = Hi + qf (pr—Hrqr)

We note two potential problems with the update rule in step 7:

e The algorithm can become unstable if g} (p, — Hyqy) is close to 0.

e There is no guarantee that Hj will be positive definite.

Lecture 10: October 1

Lecture 10: October 1 10-7

10.3.2.2 Davidson-Fletcher-Powell Method (DFP)

The DFP method attempts to refine the method above and provide a way to guarantee H, is positive definite
at each iteration. The algorithm is as follows:

e Initialize Hy € R™*™ to be symmetric and positive definite.

o [terate:
1. dp = —Hpgy
2. aj = argming f(zx + ad)
3. Trgr = T + ardy
4. pr = agdg
5. gk+1 = Vf(Tr+1)
6. Hyy1 = Hy + 225 _ Hrapar Hy

i gk qf Hqy

Now we can say that Hy is positive definite at every iteration. Additionally, if f is quadratic with positive
definite Hessian @ then p;@Qp; = 0 for all 0 <4 < j < k. Thus Hyp+1Qp; = p; for 0 < j < k. Additionally it
can be shown that H, = Q! for some n.

10.3.2.3 Broyden-Fletcher-Goldfarb-Shanno Method (BFGS)

If we switch pp and ¢ in the update for H provided by the DFP method we get an update rule for the
Hessian Q:
Qrat = O + ardi Qrpepi Qk
+1 = -
arpe PEQrak

However, we want the inverse. And with Sherman-Morrison formula:

A T A1

TN-1 _ 2—1
(A4uw’)" =A T oA Tu

we apply it twice and get:

T T T T
H H,. + H
Hio H, (1 qk ka) PrDj, Prq 1k k49kDg

Prar) plan T Pk
Then the BFGS algorithm is the following:

e Initialize Hy € R™" to a symmetric, positive definite matrix.
e Initialize 2o € R", k = 0, g;, = V(f(zk)).
e Iterate

1. dp = —Hypgr

2. ap = argmingsq f(zr + ady)
3. Tpy1 =2ak + apdy
4.

i = o dy,

10-8 Lecture 10: October 1

5. gkt1 = Vf(zrs1)
6. gk = Gr+1 — Gk

T T T T

Hykqr \ prp Prqy He+Hiqrp

T Higr = Hy + (14 Ghgfhon) i peas .
k+1 G piar) piak qf pr

In practice this works better than DFP.

