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12.1 Duality

Duality for LP came before the general construct for duality. Suppose we are trying to lower bound an LP
B = minx f(x). For example:

min
x,y

px+ qy

subject to

x+ y ≥ 2
x ≥ 0
y ≥ 0

Introduce a, b, c ≥ 0, then we have: ax+ ay + bx+ cy ≥ 2a.
Then we can see that 2a is the lower bound if x and y are feasible for the LP. So we choose a, b, c such that
a+ b = p and a+ c = q and the lower bound would be 2a.

So far we have found the lower bound for the above mentioned LP problem. Now we want to find the best
lower bound:

min 2a

subject to

a+ b = p
a+ c = q
a, b, c ≥ 0

This problem is called the dual LP for the primal problem that we had. This was an example of finding the
dual problem from primal. Now consider the general case as follow,

min
x∈Rn

cTx

subject to

{
ax = b
Gx ≤ h

As you can see we have equality and inequality constraints. Now we want to find the lower bound for this
LP as discussed in the above example. for any u, v ≥ 0, and x primal feasible we have:

uT (Ax− b) + vT (Gx− h) ≤ 0 i.e.,
(−ATu−GT v)Tx ≥ −bTu− hT v

12-1



12-2 Lecture 12: October 3

Therefore, we see that we get a lower bound on the primal optimal value. Now we would like to find the
best lower bound,

min
u∈Rm,v∈Rr

bTu− hT v

subject to

{
−ATu−GT v = c

v ≥ 0

Which is the dual LP for the abovementioned general primal LP problem.

12.2 Max Flow and Min Cut

The maximum flow problem was first formulated in 1954 by T. E. Harris as a simplified model of Soviet
railway traffic flow. the max-flow min-cut theorem states that in a flow network, the maximum amount of
flow passing from the source (start node s) to the sink (end node t) is equal to the minimum capacity that,
when removed in a specific way from the network, causes the situation that no flow can pass from the source
to the sink.

Given graph G = (V,E), define flow fij , (i, j) ∈ E to satisfy:

fij ≥ 0, (i, j) ∈ E
fi,j ≤ cij , (i, j) ∈ E where c is capacity∑
(i,k)∈E fik =

∑
(k,j)∈E fkj , k ∈ V 6= {s, t}

The last line means that the input flow in any node other than start and end nodes is equal to output flow.

Max flow problem tries to find the flow that maximizes total value of flow from s to t, as an LP:

min
f∈R|E|

∑
(s,j)∈E fsj

subject to


fij ≥ 0

fij ≤ cij , (i, j) ∈ E∑
(i,k)∈E fik =

∑
(k,j)∈E fkj , k ∈ V 6= {s, t}

Introducing aij , bij ≥ 0, (i, j) ∈ E, and xk, k ∈ V 6= {s, t} we will have the dual LP as follow:

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E bijcij

subject to

{
bij ≥ xi − xj

bij , xi, xj ∈ {0, 1}
for all i, j

Which is called the min cut problem. Therefore we know that value of max flow ≤ optimal value for dual
LP min cut ≤ capacity of min cut. Famous result, called the max flow min cut theorem states that value
of max flow through a network is exactly the capacity of the min cut. Hence the above inequalities are all
equalities where the primal LP and dual LP have exactly the same optimal values which is called strong
duality.
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12.3 Another perspective on LP duality

The second perspective of LP duality helps define duality in general beyond LP.
A general LP problem is defined as follows.

min
x∈Rn

cTx

subject to

{
Ax = b
Gx ≤ h

For any feasible x ∈ Rn and v ≥ 0, cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) = L(x, u, v). Therefore,

f∗(x) = min
x∈C

cTx ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) := g(u, v).

Here, g(u, v) =

{
bTu− hT v, c = −ATu−GT v
−∞, otherwise

.

This shows that, for any u and v ≥ 0, g(u, v) is the lower bound of f∗(x). To find the tightest lower bound
among all, we can solve the dual LP, which is defined as follows.

max
u∈Rm,v∈Rr

bTu− hT v

subject to

{
−ATu−GT v = c

v ≥ 0

12.4 Lagrangian Duality

The perspective on LP duality can go beyond LP. The general idea is that, we can use Lagrangian to find a
lower bound for primal minimum. Then we follow similar steps above, if possible, to find the tightest lower
bound.
The general minimization problem is formulated as follows.

min
x∈Rn

f(x)

subject to

{
hi(x) ≤ 0, i = 1, 2, ..,m
lj(x) = 0, j = 1, .., r

Lagrangian is defined by L(x, u, v) = f(x) +
m∑
i=1

uihi(x) +
r∑

j=1

vj lj(x), where u ∈ Rm, v ∈ Rr, u ≥ 0.

Hence, for any feasible x, f(x) ≥ L(x, u, v), because hi(x) ≤ 0, lj(x) = 0. This means that, L(x, u, v) is the
point-wise lower bound of f(x).
For example, Figure 12.4 shows an one-dimensional optimization problem, with objective being f(x) (solid
line) and constraint being h(x)(dashed line) ≤ 0. The feasible region of x is approximately [−0.46, 0.46].
Each dotted line represents a Lagrangian L(x, u) for different choices of u ≥ 0. They lie below the solid line
within the feasible region.

Let C denote primal feasible set, f∗ denote primal optimal value. Minimizing L(x, u, v) over all x ∈ Rn gives
a lower bound on f∗, because

f∗(x) ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) := g(u, v)
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Figure 12.1: Example of Lagrangian Duality

Like LP dual function, g(u, v) is called Lagrangian dual function. The domain of this function is that, u ≥ 0
and u ∈ Rm, v ∈ Rr.
This relation holds in general for any optimization problem, while the equality may not hold for any pair of
(x, u, v). For example, in Figure 12.4, dashed horizontal line is primal optimal f∗, and solid line shows dual
function g(λ). In this example, g(λ) is always smaller than f∗. (Equality will hold for some pair of (x, u, v).
Stay tuned for the next lecture.)

12.5 Quadratic Programming

Now we will use a quadratic program problem as an illustration of Lagrangian duality. Consider the following
quadratic program.

min
x∈Rn

1
2x

TQx+ cTx (Q � 0)

subject to

{
Ax = b
x ≥ 0

Without any constraints, the optimal value reaches at point x = −Q−1c.
Lagrangian of the problem is L(x, u, v) = 1

2x
TQx + cT + cTx − uTx + vT (Ax − b), where u ≥ 0. Thus,

Lagrangian dual function is g(u, v) = min
Rn

L(x, u, v) = − 1
2 (c − u + AT v)TQ−1(c − u + AT v) − bT v. Here,

g(u, v) is lower bound of f∗.
When Q � 0, Lagrangian dual function becomes:

g(u, v) =

{
− 1

2 (c− u+AT v)TQ+(c− u+AT v)− bT vc− u+AT v if(c− u+AT v) ⊥ null(Q)
−∞ otherwise

Here, Q+ denotes generalized inverse of Q, and g(u, v) is the non-trivial lower bound of f∗ when (c − u +
AT v) ⊥ null(Q).
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Figure 12.2: Lagrangian dual function.

The relation between primal and dual QP is shown in Figure 12.5. In this example, f(x) is quadratic in 2
variables, with constraints x ≥ 0. Lagrangian dual function g(u) is also quadratic in 2 variables, subject to
u ≥ 0. As we can see, g(u) provides a lower bound on f∗ for any feasible u.

Figure 12.3: Primal and Dual QP in 2D.


