Lecture 13: KKT conditions

Lecturer: Ryan Tibshirani

Scribes: Guoqing Zheng, Minghao Ruan

Fall 2013

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Continued from last lecture on duality

13.1.1 Weak Duality

Recall from last lecture, we reached the following conclusion:

$$f^* = \min_{x \in C} f(x) \ge \min_{x \in C} L(x, u, v) \ge \min_{x \in \mathbb{R}} L(x, u, v) := g(u, v)$$
(13.1)

And we denote the tight upper bound of g(u, v) as $g^* := \max_{u>0} g(u, v)$.

The key insight is that the **weak duality property** always hold no matter the primal problem is convex or not, namely:

$$f^* \ge g^* \tag{13.2}$$

Also note that the dual problem is always a **convex optimization** problem (maximizing a concave function), even when the primal problem is non-convex.

By definition:

$$g(u, v) = \min_{x \in \mathbb{R}^n} \left[f(x) + \sum_{i=1}^m u_i h_i(x) + \sum_{j=1}^r v_j \ell_j(x) \right]$$
(13.3)

$$= -\max_{x \in \mathbb{R}^n} \left[-f(x) - \sum_{i=1}^m u_i h_i(x) - \sum_{j=1}^r v_j \ell_j(x) \right]$$
(13.4)

For any x, pointwise maximum is a convex function in (u, v).

The following example illustrates this property:

$$\min_{x} f(x) = x^{4} - 50x^{2} + 100x$$

subject to $x \ge -4.5$ (13.5)

The original problem is obvious non-convex as shown in Fig. 13.1.

Though the dual function can be derived explicitly (differentiate the Lagrangian and find a closed-form solution of a cubic equation), the form of g is quite complicated but it is concave!

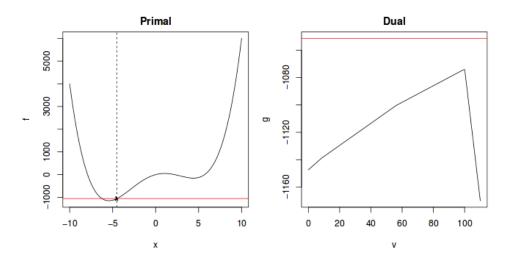


Figure 13.1: Nonconvex primal problem and its concave dual problem

13.1.2 Strong Duality

Weak duality is good but in many problems we have observed something even better:

$$f^* = g^*$$
 (13.6)

which is called the **strong duality**. But when do we have this nice property?

Slater's Condition:

- if the primal is convex (i.e., f and h_1, \ldots, h_m are convex, ℓ_1, \ldots, ℓ_r are affine)
- if there exists at least one strictly feasible $x \in \mathbb{R}^n$ (i.e., $h_1(x) < 0, \dots h_m(x) < 0$ and $\ell_i(x) = 0, \dots \ell_r(x) = 0$)

This is actually a weak statement and it can be further refined: need strict inequality only over h_i that are not affine.

In the case of linear programming:

- If the primal LP is feasible, then by Slater's condition strong duality holds and hence $f^* = g^*$;
- If the dual LP is feasible, then by Slater's condition strong duality holds and hence $g^* = f^*$;
- Strong duality breaks only when both primal and dual are infeasible.

13.2 Recap and Summary: Primal problem and dual problem

Primal problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, i = 1, ..., m$

$$\ell_j(x) = 0, j = 1, ..., r$$
(13.7)

Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$
(13.8)

Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x, u, v) \tag{13.9}$$

Dual problem:

$$\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v)$$

subject to $u \ge 0.$ (13.10)

Immediate results:

- For any feasible solution, $f(x) \ge L(x, u, v)$.
- g(u, v) is always concave, even if f(x) is not convex.
- Weak duality: It is always true that $f^* \ge g^*$. Hence for any (x, u, v),

$$f(x) - f^* \le f(x) - g(u, v) \tag{13.11}$$

If f(x) - g(u, v) = 0, then x is primal optimal and (u, v) are dual optimal.

• Slater's condition: for convex primal, if there is an x such that

$$h_1(x) < 0, ..., h_m(x) < 0 \text{ and } \ell_1(x) = 0, ..., \ell_r(x) = 0$$
 (13.12)

then strong duality holds, i.e., $f^* = g^*$.

13.3 Karush-Kuhn-Tucker conditions

Theorem 13.1 Under strong duality, x^* and u^* , v^* are primal and dual solutions if and only if the KKT conditions hold, which are:

- Stationarity: $0 \in \partial f(x^*) + \sum_{i=1}^m u_i^* \partial h_i(x^*) + \sum_{j=1}^r v_j^* \partial \ell_j(x^*)$
- Complementary slackness: $u_i^* h_i(x^*) = 0$ for all i
- Primal feasibility: $h_i(x^*) \leq 0, \ell_j(x^*) = 0$ for all i, j
- Dual feasibility: $u_i^* \ge 0$ for all *i*.

Proof: We first prove necessity.

$$f(x^*) = g(u^*, v^*)$$
(13.13)

$$= \min_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^m u_i^* h_i(x) + \sum_{j=1}^r v_j^* \ell_j(x)$$
(13.14)

$$\leq \min_{x \in \mathbb{R}^n} f(x) \tag{13.15}$$

$$=f(x^*)$$
 (13.16)

Hence the above inequality is actually an equality, which means

- Primal feasibility and dual feasibility obvisouly hold;
- x^* minimizes $L(x, u^*, v^*)$ over \mathbb{R}^n , hence the subdifferential of $L(x, u^*, v^*)$ contains 0 at $x = x^*$, which is the stationarity condition;
- $\sum_{i=1}^{m} u_i^* h_i(x^*) = 0$ and since $u_i^* \leq 0$ and $h_i(x) \leq 0$, hence $u_i^* h_i(x^*) = 0$ for all i, which is the complementary slackness.

Next we prove sufficiency. If there exists x^* , u^* and v^* that satisfy the KKT condition, then

$$g(u^*, v^*) = \min_{x \in \mathbb{R}^n} L(x, u^*, v^*)$$
(13.17)

$$= f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{r} v_i^* \ell_j(x^*) \quad \text{(stationarity)}$$

$$= f(x^*) \quad \text{(complementary slackness, dual feasibility)} \quad (13.19)$$

which means the duality gap is zero and therefore x^*, u^*, v^* are optimal solutions.

Warning: One may attempt to conclude that stationarity is equivalent to the following:

$$0 = \nabla f(x) + \sum_{i=1}^{m} u_i^* \nabla h_i(x) \sum_{j=1}^{r} v_j^* \nabla \ell_j(x)$$
(13.20)

This is only true when f(x), $h_i(x)$ and $\ell_i(x)$ are convex.

Another way to formulate the problem is using the indicator function \mathbb{I} and normal cone \mathcal{N} :

$$f(x) + \sum_{i=1}^{N} \mathbb{I}_{\{h_i(x) \le 0\}} + \sum_{j=1}^{N} \mathbb{I}_{\{\ell_j(x)=0\}}$$
(13.21)

$$0 \in \partial f(x^*) + \sum_{i=1} \mathcal{N}_{\{h_i(x^*) \le 0\}} + \sum_{j=1} \mathcal{N}_{\{\ell_j(x^*) = 0\}}$$
(13.22)

$$\iff x^*$$
 is optimal (13.23)

13.4 Examples

13.4.1 Quadratic optimization with equality constraints

Consider for $Q \succeq 0$,

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + c^T x$$

subject to $Ax = 0$ (13.24)

As $Q \succeq 0$, the above problem is convex. By stationarity and primal feasibility, we have x is a solution if and only if

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} -c \\ 0 \end{bmatrix}$$
(13.25)

for some v.

13.4.2 Side note: Newton's method on linearly constrained problem

$$\min \quad f(x) \tag{13.26}$$

subject to
$$Ax = b$$
 (13.27)

Recall Newton's method updates x as follows: $x^+ = x - (\nabla^2 f(x))^{-1} \nabla f(x)$, but this update rule cannot garuantee the constraint is satisfied at each step.

Instead we can start from one x that satisfies the constraint: Ax = b, then we update it with:

$$x^+ = x + \Delta$$
 where $A\Delta = 0$ (13.28)

and then minimize the following quadratic problem:

$$\frac{1}{2}\Delta^T (\nabla^2 f(x))\Delta + \nabla f(x)^T \Delta$$
(13.29)

13.4.3 Water-filling

Consider

$$\min_{x \in \mathbb{R}^n} -\sum_{i=1}^n \log(\alpha_i + x_i)$$

subject to $x \ge 0, 1^T x = 1$ (13.30)

The Lagrangian is

$$L(x, u, v) = -\sum_{i=1}^{n} \log(\alpha_i + x_i) - \sum_{i=1}^{n} u_i x_i + v(\sum_{i=1}^{n} x_i - 1)$$

Stationarity:

$$-\frac{1}{\alpha_i + x_i} - u_i + v = 0 \qquad \text{for all } i = 1, ..., n \qquad (13.31)$$

Complementary slackness:

$$u_i x_i = 0$$
 for all $i = 1, ..., n$ (13.32)

Primal feasibility:

$$x \ge 0, 1^T x = 1 \tag{13.33}$$

Dual feasibility:

$$u_i \ge 0 \tag{13.34}$$

Combining the above results, we get

$$v - \frac{1}{\alpha_i + x_i} \ge 0$$

$$x_i(v - \frac{1}{\alpha_i + x_i}) = 0$$
(13.35)

Hence if $v < \frac{1}{\alpha_i}$, then $x_i > 0$, then $v = \frac{1}{\alpha_i + x_i}$ which is $x_i = \frac{1}{v} - \alpha_i$;

if $v \ge \frac{1}{\alpha_i}$, then $x_i = 0$. In sum, we get $x_i = \max\{0, \frac{1}{v} - \alpha_i\}$. By primal feasibility, we solve the uni-variate optimization problem

$$\sum_{i=1}^{n} \max\{0, \frac{1}{v} - \alpha_i\} = 1$$
(13.36)

to get the solution to the original problem.

13.4.4 Lasso

Consider

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$
(13.37)

From stationarity,

$$X^T(y - X\beta) = \lambda s \tag{13.38}$$

where $s \in \partial \|\beta\|_1$, that is

$$s_i \in \begin{cases} sign(\beta_i) & \text{if } \beta_i \neq 0\\ [-1,1] & \text{if } \beta_i = 0 \end{cases}$$
(13.39)

from which we directly get if $|X_i^T(y - X\beta)| < \lambda$, then $\beta_i = 0$.

13.4.5 Group Lasso

Consider

$$\min_{\beta = (\beta^{(1)}, \beta^{(2)}, \dots, \beta^{(G)}) \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \sum_{i=1}^G w_i \|\beta^{(i)}\|_2$$
(13.40)

From stationarity, for i = 1, 2, ..., G,

$$(X^{(i)})^T (y - X\beta) = \lambda w_i s^{(i)}$$
(13.41)

where $s^{(i)} \in \partial \|\beta^{(i)}\|_2 = \begin{cases} \frac{\beta^{(i)}}{\|\beta^{(i)}\|_2} & \text{if } \beta^{(i)} \neq 0\\ \{v : \|v\|_2 \le 1\} & \text{otherwise} \end{cases}$.

- If $||(X^{(i)})^T (y X\beta)||_2 < \lambda w_i \Rightarrow \beta^{(i)} = 0.$
- If $\beta^{(i)} \neq 0$,

$$(X^{(i)})^{T}(y - X^{(i)}\beta^{(i)} - \sum_{j \neq i} X^{(j)}\beta^{(j)}) = \lambda w_{i} \frac{\beta^{(i)}}{\|\beta^{(i)}\|_{2}}$$

$$\Rightarrow - (X^{(i)})^{T}X^{(i)}\beta^{(i)} + (X^{(i)})^{T}r^{(i)} = \lambda w_{i} \frac{\beta^{(i)}}{\|\beta^{(i)}\|_{2}}$$

$$\Rightarrow \left(\lambda w_{i} \frac{\beta^{(i)}}{\|\beta^{(i)}\|_{2}}I + (X^{(i)})^{T}X^{(i)}\right)\beta^{(i)} = (X^{(i)})^{T}r^{(i)}$$

$$\Rightarrow \beta^{(i)} = \left(\lambda w_{i} \frac{\beta^{(i)}}{\|\beta^{(i)}\|_{2}}I + (X^{(i)})^{T}X^{(i)}\right)^{-1} (X^{(i)})^{T}r^{(i)}$$
(13.42)

where $r^{(i)} = y - \sum_{j \neq i} X^{(j)} \beta^{(j)}$.

13.5 Summary

Under strong duality, we can characterize the primal solution from its dual problem.

Recall that under strong duality, the KKT conditions are necessary for optimality. Given dual solutions (u^*, v^*) , any primal solution satisfies the stationarity condition:

$$0 \in \partial f(x^*) + \sum_{i=1}^{m} u_i^* \partial h_i(x^*) + \sum_{j=1}^{r} v_j^* \partial \ell_j(x^*)$$
(13.43)

In other words, x^* achieves the minimum in $\min_{x \in \mathbb{R}^n} L(x, u^*, v^*)$.

- In general, this reveals a characterization of primal solutions
- In particular, if this is satisfied uniquely (i.e., above problem has a unique minimizer), then the corresponding point must be the primal solution.

References

[BV04] S. BOYD and L. VANDENBERGHE, "Convex optimization".