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13.1 Continued from last lecture on duality

13.1.1 Weak Duality

Recall from last lecture, we reached the following conclusion:

f∗ = min
x∈C

f(x) ≥ min
x∈C

L(x, u, v) ≥ min
x∈R

L(x, u, v) := g(u, v) (13.1)

And we denote the tight upper bound of g(u, v) as g∗ := maxu>0 g(u, v).

The key insight is that the weak duality property always hold no matter the primal problem is convex
or not, namely:

f∗ ≥ g∗ (13.2)

Also note that the dual problem is always a convex optimization problem (maximizing a concave function),
even when the primal problem is non-convex.

By definition:

g(u, v) = min
x∈Rn

f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

 (13.3)

= −max
x∈Rn

−f(x)−
m∑
i=1

uihi(x)−
r∑
j=1

vj`j(x)

 (13.4)

For any x, pointwise maximum is a convex function in (u, v).

The following example illustrates this property:

min
x

f(x) = x4 − 50x2 + 100x

subject to x ≥ −4.5 (13.5)

The original problem is obvious non-convex as shown in Fig. 13.1.

Though the dual function can be derived explicitly (differentiate the Lagrangian and find a closed-form
solution of a cubic equation), the form of g is quite complicated but it is concave!
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Figure 13.1: Nonconvex primal problem and its concave dual problem

13.1.2 Strong Duality

Weak duality is good but in many problems we have observed something even better:

f∗ = g∗ (13.6)

which is called the strong duality. But when do we have this nice property?

Slater’s Condition:

• if the primal is convex (i.e., f and h1, . . . hm are convex, `1, . . . `r are affine)

• if there exists at least one strictly feasible x ∈ Rn
(i.e., h1(x) < 0, . . . hm(x) < 0 and `i(x) = 0, . . . `r(x) = 0)

This is actually a weak statement and it can be further refined: need strict inequality only over hi that are
not affine.

In the case of linear programming:

• If the primal LP is feasible, then by Slater’s condition strong duality holds and hence f∗ = g∗;

• If the dual LP is feasible, then by Slater’s condition strong duality holds and hence g∗ = f∗;

• Strong duality breaks only when both primal and dual are infeasible.

13.2 Recap and Summary: Primal problem and dual problem

Primal problem:

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, ...,m

`j(x) = 0, j = 1, ..., r (13.7)
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Lagrangian:

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x) (13.8)

Lagrange dual function:

g(u, v) = min
x∈Rn

L(x, u, v) (13.9)

Dual problem:

max
u∈Rm,v∈Rr

g(u, v)

subject to u ≥ 0. (13.10)

Immediate results:

• For any feasible solution, f(x) ≥ L(x, u, v).

• g(u, v) is always concave, even if f(x) is not convex.

• Weak duality: It is always true that f∗ ≥ g∗. Hence for any (x, u, v),

f(x)− f∗ ≤ f(x)− g(u, v) (13.11)

If f(x)− g(u, v) = 0, then x is primal optimal and (u, v) are dual optimal.

• Slater’s condition: for convex primal, if there is an x such that

h1(x) < 0, ..., hm(x) < 0 and `1(x) = 0, ..., `r(x) = 0 (13.12)

then strong duality holds, i.e., f∗ = g∗.

13.3 Karush-Kuhn-Tucker conditions

Theorem 13.1 Under strong duality, x∗ and u∗, v∗ are primal and dual solutions if and only if the KKT
conditions hold, which are:

• Stationarity: 0 ∈ ∂f(x∗) +
∑m
i=1 u

∗
i ∂hi(x

∗) +
∑r
j=1 v

∗
j ∂`j(x

∗)

• Complementary slackness: u∗i hi(x
∗) = 0 for all i

• Primal feasibility: hi(x
∗) ≤ 0, `j(x

∗) = 0 for all i, j

• Dual feasibility: u∗i ≥ 0 for all i.
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Proof: We first prove necessity.

f(x∗) = g(u∗, v∗) (13.13)

= min
x∈Rn

f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j `j(x) (13.14)

≤ min
x∈Rn

f(x) (13.15)

= f(x∗) (13.16)

Hence the above inequality is actually an equality, which means

• Primal feasibility and dual feasibility obvisouly hold;

• x∗ minimizes L(x, u∗, v∗) over Rn, hence the subdifferential of L(x, u∗, v∗) contains 0 at x = x∗, which
is the stationarity condition;

•
∑m
i=1 u

∗
i hi(x

∗) = 0 and since u∗i ≤ 0 and hi(x) ≤ 0, hence u∗i hi(x
∗) = 0 for all i, which is the

complementary slackness.

Next we prove sufficiency. If there exists x∗, u∗ and v∗ that satisfy the KKT condition, then

g(u∗, v∗) = min
x∈Rn

L(x, u∗, v∗) (13.17)

= f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗i `j(x
∗) (stationarity) (13.18)

= f(x∗) (complementary slackness, dual feasibility) (13.19)

which means the duality gap is zero and therefore x∗, u∗, v∗ are optimal solutions.

Warning: One may attempt to conclude that stationarity is equivalent to the following:

0 = ∇f(x) +

m∑
i=1

u∗i∇hi(x)

r∑
j=1

v∗j∇`j(x) (13.20)

This is only true when f(x), hi(x) and `j(x) are convex.

Another way to formulate the problem is using the indicator function I and normal cone N :

f(x) +
∑
i=1

I{hi(x)≤0} +
∑
j=1

I{`j(x)=0} (13.21)

0 ∈∂f(x∗) +
∑
i=1

N{hi(x∗)≤0} +
∑
j=1

N{`j(x∗)=0} (13.22)

⇐⇒ x∗is optimal (13.23)
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13.4 Examples

13.4.1 Quadratic optimization with equality constraints

Consider for Q � 0,

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = 0 (13.24)

As Q � 0, the above problem is convex. By stationarity and primal feasibility, we have x is a solution if and
only if [

Q AT

A 0

] [
x
v

]
=

[
−c
0

]
(13.25)

for some v.

13.4.2 Side note: Newton’s method on linearly constrained problem

min f(x) (13.26)

subject to Ax = b (13.27)

Recall Newton’s method updates x as follows: x+ = x − (∇2f(x))−1∇f(x), but this update rule cannot
garuantee the constraint is satisfied at each step.

Instead we can start from one x that satisfies the constraint: Ax = b, then we update it with:

x+ = x+ ∆ where A∆ = 0 (13.28)

and then minimize the following quadratic problem:

1

2
∆T (∇2f(x))∆ +∇f(x)T∆ (13.29)

13.4.3 Water-filling

Consider

min
x∈Rn

−
n∑
i=1

log(αi + xi)

subject to x ≥ 0, 1Tx = 1 (13.30)

The Lagrangian is

L(x, u, v) = −
n∑
i=1

log(αi + xi)−
n∑
i=1

uixi + v(

n∑
i=1

xi − 1)
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Stationarity:

− 1

αi + xi
− ui + v = 0 for all i = 1, ..., n (13.31)

Complementary slackness:

uixi = 0 for all i = 1, ..., n (13.32)

Primal feasibility:

x ≥ 0, 1Tx = 1 (13.33)

Dual feasibility:

ui ≥ 0 (13.34)

Combining the above results, we get

v − 1

αi + xi
≥ 0

xi(v −
1

αi + xi
) = 0 (13.35)

Hence if v < 1
αi

, then xi > 0, then v = 1
αi+xi

which is xi = 1
v − αi;

if v ≥ 1
αi

, then xi = 0. In sum, we get xi = max{0, 1v − αi}. By primal feasibility, we solve the uni-variate
optimization problem

n∑
i=1

max{0, 1

v
− αi} = 1 (13.36)

to get the solution to the original problem.

13.4.4 Lasso

Consider

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1 (13.37)

From stationarity,

XT (y −Xβ) = λs (13.38)

where s ∈ ∂‖β‖1, that is

si ∈

{
sign(βi) if βi 6= 0

[−1, 1] if βi = 0
(13.39)

from which we directly get if |XT
i (y −Xβ)| < λ, then βi = 0.
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13.4.5 Group Lasso

Consider

min
β=(β(1),β(2),...,β(G))∈Rp

1

2
‖y −Xβ‖22 + λ

G∑
i=1

wi‖β(i)‖2 (13.40)

From stationarity, for i = 1, 2, ..., G,

(X(i))T (y −Xβ) = λwis
(i) (13.41)

where s(i) ∈ ∂‖β(i)‖2 =

{
β(i)

‖β(i)‖2
if β(i) 6= 0

{v : ‖v‖2 ≤ 1} otherwise
.

• If ‖(X(i))T (y −Xβ)‖2 < λwi ⇒ β(i) = 0.

• If β(i) 6= 0,

(X(i))T (y −X(i)β(i) −
∑
j 6=i

X(j)β(j)) = λwi
β(i)

‖β(i)‖2

⇒− (X(i))TX(i)β(i) + (X(i))T r(i) = λwi
β(i)

‖β(i)‖2

⇒
(
λwi

β(i)

‖β(i)‖2
I + (X(i))TX(i)

)
β(i) = (X(i))T r(i)

⇒β(i) =

(
λwi

β(i)

‖β(i)‖2
I + (X(i))TX(i)

)−1
(X(i))T r(i) (13.42)

where r(i) = y −
∑
j 6=iX

(j)β(j).

13.5 Summary

Under strong duality, we can characterize the primal solution from its dual problem.

Recall that under strong duality, the KKT conditions are necessary for optimality. Given dual solutions
(u∗, v∗), any primal solution satisfies the stationarity condition:

0 ∈ ∂f(x∗) +

m∑
i=1

u∗i ∂hi(x
∗) +

r∑
j=1

v∗j ∂`j(x
∗) (13.43)

In other words, x∗ achieves the minimum in minx∈Rn L(x, u∗, v∗).

• In general, this reveals a characterization of primal solutions

• In particular, if this is satisfied uniquely (i.e., above problem has a unique minimizer), then the corre-
sponding point must be the primal solution.
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