
Duality uses and correspondences

10-725: Optimization Fall 2013

Lecture 14 Duality uses and correspondences: Oct 10 2013
Lecturer: Ryan Tibshirani Scribes: Jay-Yoon Lee

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate the duality uses and correspondence.

14.1 Topics Covered

• Uses of duality

• Conjugate functions

• Conjugates and dual problems

14.2 Uses of Duality

If we have a primal feasible point and we have a pair u, v that are dual feasible,

f(x)− g(u, v)

is called the duality gap between x and u, v. Since

f(x)− f(x∗) ≤ f(x)− g(u, v)

,

a zero duality gap implies optimality. Also, this inequality on duality gap can be used as a stopping criterion
in algorithms.

Under strong duality, given u∗, v∗, the dual optimal, the x∗ = arg min
x

L(x, u∗, v∗) and often times this

min
x
L(x, u∗, v∗) can be expressed in closed form. When dual is easier to solve, we will exploit this fact and

get the primal solution from the dual.

For example, the multivariate minimization problem of the Primal problem: (from B & V p.249)

min
x

n∑
i=1

fi(xi) s.t. aTx = b
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can become univariate minimization problem Dual problem:

L(x, v) =

n∑
i=1

fi(xi) + v(b−
n∑
i=1

aiXi)

g(v) = min
x
L(x, v)

=

n∑
i=1

min
xi

(fi(xi)− vaiXi) + vb

=

n∑
i=1

−f∗i (aiv) + vb

Therefore the dual problem is

max
v
−

n∑
i=1

f∗i (aiv) + bv

or min
v

n∑
i=1

f∗i (aiv)− bv

Note that the dual problem became element wise problem and also note that f∗i (aiv) = −min
xi

(fi(xi)−vaiXi)

is a conjugate function (we will learn this concept later this lecture) which is convex in terms of v and bv is
also convex function of v. Thus, the problem became a convex minimization problem with sclar variable v -

much easier to solve than primal. For v∗ = max
v

g(v), x∗ must minimize L(x, v∗) =
n∑
i=1

min
xi

(fi(xi)− v∗aiXi)

over x. So we can simply solve ∇fi(xi) = v∗ai for each i, for differentiable f.

14.2.1 Dual norm

norm ||x|| e.g. || ||p, || ||nuc
dualnorm ||y||∗ = max

||x||≤1
xT y

• Typical examples:
(|| ||p)∗ = || ||q where 1

p + 1
q = 1

(|| ||nuc)∗ = || ||op

• Useful fact (Dual of the dual norm):
|| ||∗∗ = || ||

• Inequality from this definition (like Cauchy-Schwarz):

∀x, y |xT y| ≤ ||x|| ||y||∗

Proof: Take z = x
||x|| , ||z|| ≤ 1 ||y||∗ = max

||x||≤1
xT y ≥ zty = xT y

||x|| ⇒ xT y ≤ ||x||||y||∗
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14.3 Conjugate functions

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

xT y − f(x)

Note that f∗ is always convex since it is the point wise maximum of convex functions in y.

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Hence conjugate of conjugate f∗∗ ≤ f

• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f∗(x)

⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then f∗(w, z) = f∗1 (w) + f∗2 (z)

14.3.1 Examples of conjugate functions

• Simple quadratic: f(x) = 1
2x

TQx where Q � 0

f∗(y) =
1

2
yTQ−1y

Note that Fenchel’s inequality gives

1

2
xTQx+

1

2
yTQ−1y ≥ xT y

• Indicator function: f(x) = IC(x)

f∗(y) = I∗C(y) = max
x∈C

yTx

called support function of C.

• Norm: f(x) = ||x||,
f ∗ (y) = I{z:||z||∗≤1}(y)

Proof: Recall that f∗∗ = f for a closed & convex f and that f(x) = ||x|| is such function.
Thus, from the conjugate function of indicator function:

(max
x∈C

xT y)∗ = IC(x)

Using this fact,

(||x||)∗(y) = ( max
x∈{z:||z||∗≤1}

xT z)∗(y) = I{z:||z||∗≤1}(y)
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14.4 Conjugates and dual problems

14.4.1 Lasso dual

Recall the lasso problem:

min
β∈Rp

1

2
||y −Xβ||22 + λ||β||1

Since there’s no constraints, its dual function is simply a constant (f∗), however rewriting the primal with
z = Xβ:

min
β∈Rp,z∈Rn

1

2
||y − z||22 + λ||β||1 s.t. z = Xβ

Deriving the dual,

L(β, z, u) =
1

2
||y − z||22 + λ||β||1 + uT (z −Xβ)

g(u) = min
β∈Rp,z∈Rn

L(β, z, u)

=
1

2
||y||22 −

1

2
||y − u||22 − I{v:||v||∗≤1}(X

Tu/λ) (14.1)

Note that the last Indicator term is from the conjugate function of L1-norm, that is

min
β∈Rp

λ(||β||1 − (XTu)Tβ/λ)

= −max
β∈Rp

λ((XTu)Tβ/λ||β||1−)

= −λ ∗ I{v:||v||∗≤1}(X
Tu/λ)

Therefore rewriting eq.(14.1), the lasso dual problem is:

max
u∈Rn

1

2
||y||22 −

1

2
||y − u||22 − I{v:||v||∗≤1}(X

Tu/λ)

or min
u∈Rn

1

2
||y − u||22 − I{v:||v||∗≤1}(X

Tu/λ) (14.2)

However, note that optimal solution of eq.(14.2) is not equal to the original problem since we modified the
form of g(u) although the strong duality holds here by Slater‘s condition. Also note that although the dual
problem is not much easier to solve, in case of X ∈ Rnxp with n << p, then we gain by solving dual problem
in space of u ∈ Rn.

14.4.2 Conjugates and dual problems

The conjugate function appearing in Lasso dual problem is not a coincidence. By inspecting definition of
conjugate function:

−f∗(u) = min
x∈Rn

f(x)− uTx

We can easily notice that −f∗(u) is dual function of f(x) with x ≥ 0. For example, consider:

min
x∈Rn

f(x)− uTx

⇐⇒ min
x∈Rn,z∈Rn

f(x) + g(z) + uT (z − x) = −f∗(u)− g ∗ (−u)
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hence, using the definition of conjugate function, the dual problem simply becomes

max
u∈Rn

−f∗(u)− g∗(−u)
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