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15.1 Outline

• Linear programs

• Simplex algorithm

• Running time of Simplex

• Cutting planes and ellipsoid methods for linear programming

• Cutting planes and ellipsoid method for unconstrained minimization

15.2 Linear Programs

The inequality form of LPs:

min cTx

s.t. Ax≤b
l≤x≤u

The standard form of LPs:

min cTx

s.t. Ax≤b
x≥0, b≥0

Any LP can be written into the standard form.

15.3 Simplex Method

The Simplex algorithm is a combinatorial search algorithm for solving linear programs. Conceptually, it
jumps from one intersection of half-planes to another and increase/decrease the objective along this process
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until convergence.
The running complexity of the simplex method has long been believed to be polynomial in the size of the
problem (m,n), where m is the number of constraints whereas n is the number of variables. The worst case
is to numerate all possible configurations of basic variables which results in Cmn = n!

(n−m)!m! steps. However,

the Klee-Minty example demonstrates that the running time is not polynomial 1

max
x1,...,xn

n∑
j=1

10n−jxj

s.t. 2

i∑
j=1

10i−jxj + xi≤100i−1, i = 1, 2, ..., n

xj≥0

This example requires 2n − 1 pivot steps to get the optimal solution. After shown to be not a polynomial
algorithm, people start looking for new algorithms other than simplex. Khachiyan’s ellipsoid method is the
first to be proved running at polynomial complexity for LPs. However, it is usually slower than simplex
in real problems. Karmarkar’s method is the first algorithm works reasonably well in practice while has
polynomial complexity in theory. It falls into the category of interior point method.

15.4 The ellipsoid method for linear programs

15.4.1 The feasibility problem

Given some polyhedral set

Ω = {y ∈ Rm : yTaj ≤ cj , j = 1, . . . , n}

The feasibility problem is to find some x ∈ Ω. It is possible to prove that solving the feasibility problem is
equivalent to solving general LPs.

15.4.2 The ellipsoid method

We now start to describe how the ellipsoid method works. For this we make the following assumptions:

• (A1) Ω can be covered with a finite ball of radius R

– That is: Ω ⊆ {y ∈ Rm : |y − y0| ≤ R} = S(y0, R)

– We assume that R, y0 are both known to us

• (A2) There exists a ball with radius r that fits inside of Ω

– That is, there exists r, y∗ such that S(y∗, r) ⊂ Ω

– r is known, y∗ is unknown

We will iteratively compute smaller and smaller y0, R until y0 is inside Ω.

For this we will need ellipsoids.

1For a concrete example, please see http://www.math.ubc.ca/~israel/m340/kleemin3.pdf

http://www.math.ubc.ca/~israel/m340/kleemin3.pdf


Lecture 15: October 15 15-3

Definition 15.1 (Ellipsoid) An ellipsoid is a set

E = {y ∈ Rm : (y − z)TQ(y − z) ≤ 1}

Where z ∈ Rm is the center, and Q ∈ Rn×m is positive definite.

Some properties of ellipsoids are:

• Axes of the ellipsoid are the eigenvectors of Q

• Lengths of the axes are λ
− 1

2
1 , . . . , λ

− 1
2

m

• Volume of the ellipsoid is equal to the volume of the unit sphere times the determinant of Q− 1
2 :

VOL(E) =VOL(S(0, 1))DET(Q− 1
2 )

=VOL(S(0, 1))
∏
i

λ
− 1

2
i

As mentioned, the ellipsoid method works by construction a series of ellipsoids, we let Ek denote the k-th
ellipsoid. The center of the k-th ellipsoid is yk, and the parameter matrix is Q = B−1

k , where Bk � 0.

At each iteration k, we have Ω ⊂ Ek. We can then check whether yk ∈ Ω. If it is, then we have found an
element of Ω, and we’re done. If not, there is at least one constraint that yk violates.

Suppose it is the jth constraint, we have: aTj yk > cj . It follows from this:

Ω ⊂ Ek ∩ {y : aTj y ≤ aTj yk}

By the definition of the ellipsoid, we have that for all points y in the ellipsoid, aTj y ≤ cj . Since the jth

constraint is violated, we have cj < aTj yk, which gives the intersection above.

We have that {y : aTj y ≤ aTj yk} is a halfspace, and that it cuts the ellipsoid in half. Let

1

2
Ek = Ek ∩ {y : aTj y ≤ aTj yk}

Now, the next step is to fit a new ellipsoid around this smaller set. Formally, the successor ellipsoid Ek+1 is
defined to be the minimal volume ellipsoid containing 1

2Ek.

It is constructed as follows:

First, we define:

τ =
1

m+ 1
, δ =

m2

m2 − 1
, σ = 2τ

yk+1 = yk −
τ

(aTj Bkaj)
1
2

bkaj

Bk+1 = δ(Bk − σ
Bkaja

2
jBk

aTj Bkaj

We will not prove that this is indeed the minimizer here.

Now, we compare the ratios of the two ellipsoids. We know that

Ek+1 = E(yk+1, B
−1
k+1) ⊃ 1

2
Ek
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Theorem 15.2

VOL(Ek+1)

VOL(Ek)
= (

m2

m2 − 1
)(m−1)/2 < exp(

−1

2(m+ 1)
) < 1

Again, we don’t prove this.

Convergence For the initial step,

Ω ⊂ {y ∈ Rm : |y − y0| ≤ R}

Where y0, R are known. We start the ellipsoid method from the S(y0, R) ellipsoid.

Now, consider the ratio

VOL(E2m)

VOL(E0)
=

VOL(E2m)

VOL(E2m−1)
· . . . · VOL(E1)

VOL(E0)

We can upper bound this using Theorem 15.2. We get

VOL(E2m)

VOL(E2m−1)
· . . . · VOL(E1)

VOL(E0)
≤ exp(

−2m

2(m+ 1
) <

1

2

Intuitively, this means that if we run the ellipsoid method for 2m steps, then the volume of the ellipsoid will
be halved. Thus, in O(m) iterations, the ellipsoid method can reduce the volume of the ellipsoid to half of
its initial volume.

How many iterations do we need to get into S(y∗, r)?

We start from the sphere S(y0, R). Its volume is VOL(E0) = cRm. After k steps, we want an ellipsoid with
volume VOL(Ek) ≤ cτm.

We get

VOL(Ek)

VOL(E0)
≤ (

τ

R
)m ≤ (

1

2
)

k
m

Where the last inequality is because we halve the size in every m steps. Rewriting, we get

m log
τ

R
≤ k
m

log
1

2
⇔

m log
R

τ
≥ k
m

log 2 ⇔

k ≤O(m2 log
R

τ
)

Hence we can reduce the volume to less than that of a sphere of radius r in O(m2 log R
τ ) iterations.

A single iteration of the ellipsoid method requires O(m2) operations. Thus, the entire process requires
O(m4 log R

τ ) operations.

Thus, we can solve the feasibility problem.
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15.5 Solving general LPs with the ellipsoid method

Consider a primal LP:

max cTx

s.t. Ax ≤ b
x ≥ 0

and its dual:

min yT b

s.t. yTA ≥ cT

y ≥ 0

From duality theory we know that for any x, y such that they are primal and dual feasible solutions, we have
cTx ≤ bT y. For optimal x∗, y∗, we know that cTx∗ = bT y∗. Thus, we can write the feasibility program

−cTx+ bT y ≤ 0

Ax ≤ b
−AT y ≤ c
x, y ≥ 0

Where any feasible x, y for this problem must be primal and dual optimal solutions.

Thus, we can bound the number of operations needed for solving a linear program by:

O((m+ n)4 log
R

τ
)

15.6 Cutting Plane and Ellipsoid Method for Unconstrained Con-
vex Optimization

Initialize with an ellipsoid containing the optimal point:

x∗ ∈ εk = {x∈Rn : (x− xk)TP−1
k (x− xk)≤1}

Now if we know how to compute ∂f , the subgradient of the function f(x), we can use the following inequality:

∂f(xk)(x∗ − xk)≤f(x∗)− f(xk)≤0

With this, we can draw a line perpendicular to ∂f(xk) to cut the plane into 2 half-planes and have x∗ in
one of them:

x∗∈H(xk) = {x∈Rn : ∂f(xk)Tx≤∂f(xk)Txk}

Therefore we have:

x∗∈H(xk) ∩ εk = {x∈Rn : ∂f(xk)Tx≤∂f(xk)Txk and (x− xk)TP−1
k (x− xk)≤1}
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Thus, we can construct a new ellipsoid εk+1 with the minimum volume containing the set H(xk) ∩ εk:

H(xk) ∩ εk ∈ εk+1

We iterate the above procedure until we satisfy the stopping criteria f(xk) − f(x∗) ≤ ε. The explicit form
of constructing new ellipsoid is as follows:

xk+1 =xk −
1

n+ 1
Pkg̃k+1

Pk+1 =
n2

n2 − 1
(Pk −

2

n+ 1
Pkg̃k+1g̃

T
k+1Pk)

Where g̃k+1 = gk+1√
gTk+1Pkgk+1

.

The cutting plane method could also be used for constrained problem as long as it is easy to compute the
intersection of the feasible region and the set H(xk) ∩ εk. We can update εk + 1 as the ellipsoid with the
minimum volume containing H(xk) ∩ εk∩C, where C is the feasible region of the problem.
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