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16.1 Penalty Methods

16.1.1 Problem Setup

Many times we have the constrained optmization problem (P):

min
x∈S

f(x)

where f : Rn → R is continuous and S is a constraint set in Rn.

We introduce the Penalty program, (P(c)), the unconstrained problem:

min
x∈Rn

f(x) + cp(x)

where c > 0 and p : Rn → R is the penalty function where p(x) ≥ 0 ∀ x ∈ Rn, and p(x) = 0 iff x ∈ S.

Intuitively, the penalty term is used to give a high cost for violation of the constraints.
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16.1.2 Inequality and Equality Constraints

For example, if we are given a set of inequality constraints (i.e. S = {x : gi(x) ≤ 0, i = 1, 2, . . . ,m}), a useful

penalty function could be p(x) = 1
2

∑m
i=1 (max[0, gi(x)])

2
. That is, if we satisfy the constraint, we don’t take

any penalty. Otherwise we take a squared penalty. Depending on c, we weight this penalty in (P (c)). For
equality constraints we can rewrite them as inequality constraints and use them as above. That is, rewrite
hj(x) = 0 as two inequality constraints, hj(x) ≤ 0 and −hj(x) ≤ 0.

For large c, the minimum point of a problem (P (c)) is in a region where the penalty p is small. In fact, we
will prove below that as c → ∞, the solution of the penalty problem (P (c)) will converge to a solution of
the constrained problem (P ).

16.2 Penalty Method Lemmas

Let 0 < c1 < c2 < . . . < ck < ck+1 < . . .→∞ be our penalty parameter. Let q(c, k) := f(x) + cp(x) be our
penalty program. Also, let xk = arg minx q(ck, x) = arg minx f(x) + ckp(x).

With this notation, we will prove the following for penalty lemmas:

1. q(ck, xk) ≤ q(ck+1, xk+1)

2. p(xk) ≥ p(xk+1)

3. f(xk) ≤ f(xk+1)

4. f(x∗) ≥ q(ck, xk) ≥ f(xk)

Below, we provide proofs of each of the above lemmas.

Lemma 16.1 q(ck, xk) ≤ q(ck+1, xk+1)

Proof:

q(ck+1, xk+1) = f(xk+1) + ck+1p(xk+1)

≥ f(xk+1) + ckp(xk+1) (∵ ck+1 > ck > 0)

≥ f(xk) + ckp(xk+1) (∵ xk is the minimizer of q(ck, x))

∴ q(ck+1, xk+1) ≥ q(ck, xk) (∵ q(c, xk+1 = f(xk) + ckp(xk+1))

Lemma 16.2 p(xk) ≥ p(xk+1)

Proof:

f(xk) + ckp(xk) ≤ f(xk+1 + ckp(xk+1) (∵ xk is the minimizer of q(ck, x)) (16.1)

f(xk+1) + ck+1p(xk+1) ≤ f(xk) + ck+1p(xk) (∵ xk+1 is the minimizer of q(ck+1, x)) (16.2)
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Adding Equation 16.1 and Equation 16.2 together, we get

ckp(xk) + ck+p(xk+1) ≤ ckp(xk+1) + ck+1p(xk)

⇒ (ck+1 − ck)p(xk+1) ≤ (ck+1 − ck)p(x)

∴ p(xk+1) ≤ p(xk) (∵ ck+1 > ck ⇒ ck+1 − ck > 0)

Lemma 16.3 f(xk) ≤ f(xk+1)

Proof:

f(xk+1) + ckp(xk+1) ≥ f(xk) + ckp(xk) (∵ xk is the minimizer of q(ck, x))

≥ f(xk) + ckp(xk+1) (∵ Lemma 16.2)

∴ f(xk+1) ≥ f(xk)

Lemma 16.4 Let x∗ be the optimal value of our original constrained problem (P ) with constraint set S.
Then, f(x∗) ≥ q(ck+1, xk+1) ≥ f(xk) ∀k.

Proof:

f(x∗) = f(x∗) + ckp(x
∗) (∵ x∗ ∈ S ⇒ p(x∗) = 0)

≥ f(xk) + ckp(xk) ≥ f(xk) (∵ xk is the minimizer of q(ck, x), and ck > 0, p(xk) ≥ 0)

∴ f(x∗) ≥ q(ck+1, xk+1) ≥ f(xk) ∀k

16.3 Convergence of the Penalty Method

Using the lemmas developed in Section 16.2, we prove the Penalty convergence theorem.

Theorem 16.5 Suppose f, g, p are continuous functions. Let xk = arg minx f(x) + ckp(x) for a penalty
function p(x) as defined in subsection 16.1.1. Let 0 < c1 < c2 < . . . < ck < ck+1 < . . . → ∞. Let x̄ be an
arbitrary limit point of {xk}∞k=1.

Then, x̄ solves (P ) where (P ) is the original constrained problem min
x
f(x) s.t. g(x) ≤ 0.

Proof: The limit point is defined as x̄ = lim
k∈K

xk.
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Since f is given as continuous, then lim
k∈K

f(xk) = f(x̄). We then get,

q∗ := lim
x∈K

q(ck, xk) ≤ f(x∗) (∵ Lemma 16.4)

⇒ q∗ = lim
x∈K

f(xk) + lim
x∈K

ckp(xk) ≤ f(x∗)

⇒ q∗ = f(x̄) + lim
x∈K

ckp(xk) ≤ f(x∗)

⇒ q∗ − f(x̄) = lim
x∈K

ckp(xk) ≤ f(x∗)

Since q∗ − f(x̄) and f(x∗) are finite which means limx∈K ckp(xk) has to be a finite quantity. Since we know
that ck →∞, p(xk)→ 0. This means that p(x̄) = 0, which from the definition of p tells us that x̄ ∈ S where
S is our constraint set.

16.4 Frequently used penalty functions

1. Polynomial penalty: p(x) =
∑m
i=1[max{0, gi(x)}]q, q ≥ 1

(a) Linear penalty: (q = 1) : p(x) =
∑m
i=1[max{0, gi(x)}]

(b) Quadratic penalty: (q = 2) : p(x) =
∑m
i=1[max{0, gi(x)}]

For example, if we define g+i (x) = max{0, gi(x)}, then g+(x) = [g+1 (x), .., g+m(x)]T . The penalty
function P (x) = g+(x)T g+(x), or P (x) = g+(x)TΓg+(x) where Γ > 0

2. Penalty for problem with equality and inequality constraints

P : min
x
f(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ Rn

Need penalty function: p(x) = 0 if g(x) ≤ 0 AND h(x) = 0

p(x) > 0 if g(x) > 0 OR h(x) 6= 0

We can use: p(x) =

m∑
i=1

[max{0, gi(x)}]q +

k∑
i=1

|hi(x)|q, q ≥ 1

16.5 Derivative of the penalty function

Suppose we use P (x) = γ(g+(x)), where g+(x) is as defined previously. An example of γ(x) is γ(x) = yT y.
The difficulty arises when we try to take the derivative of P (x), as the max function g+(x) is not differen-
tiable. But we will see that if we choose γ(x) appropriately, we can make P (x) differentiable.

∂P (x)

∂x
=

m∑
i=1

∂γ(g+(x))

∂(g+i (x))

∂g+i (x)

∂x

∂g+(x)

∂x
=

{
∂gi(x)
∂x if gi(x) ≥ 0

0 if gi(x) < 0
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But
∂g+i (x)

∂x may not be continuous at 0. However, if we choose γ such that ∂γ(g+(x))
∂yi

= 0 whenever gi(x) =

0, then it won’t matter if
∂g+i (x)

∂x is discontinuous, because it will be multiplied by 0. One such γ(x) is∑m
i=1[g+i (x)]q, q ≥ 1

16.6 KKT in penalty methods

As before, we have:

1. Penalty program: xk = arg minx f(x) + ckP (x)

2. Penalty function: P (x) = γ(g+(x))

3. Derivatives: ∇P (x) =
∑m
i=1

∂γ(g+(x))

∂(g+i (x))

∂g+i (x)

∂x

The 1st order condition in local minimum tells us:

0 = ∇f(xk) + ck∇P (xk) = ∇f(xk) +

m∑
i=1

ui,k∇gi(xk) where ui,k = ck
∂γ(g+(xk))

∂(g+i (xk))

0 = ∇f(xk) + (uk)T∇g(xk)

uk now looks like a Lagrange multiplier. Indeed, under some mild conditions, as xk → x∗ =⇒ uk → u∗,
where u∗ is the Lagrange multiplier at the optimum.
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