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This lecture discusses barrier methods for constrained optimization problems.

17.1 Barrier Method Formulation

The standard constrained minimization problem (P ):

(P ) : min
x∈S

f(x)

is modified to create a penalized unconstrained problem (P (c)):

(P (c)) : min
x
f(x) +

1

c
B(x)

The barrier penalty B(x) must have the following three properties:

1. B(x) must be continuous

2. B(x) ≥ 0∀x ∈ int(S)

3. limx→∂S B(x) =∞

Example:

Consider the following constraint on x:

a ≤ x ≤ b

A potential barrier function is:

g1(x) = x− b

g2(x) = a− x

B(x) = −
(

1

g1(x)
+

1

g2(x)

)
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17.2 Log Barrier

For a system of constraints gi(x) ≤ 0 i = 1, . . . ,m, the log barrier penalty is defined as:

B(x) =

m∑
i=1

log−gi(x)

It can be verified that this penalty function possesses the aforementioned properties. Consider now a schedule
of barrier weights ci with the following ordering:

0 < ci < c2 < . . . < ck < ck+1 →∞

Let µk = 1
ck

. The solutions to the barrier problems are:

xk = arg min
x∈int(S)

f(x) + µkB(x)

Define r(µk, xk) = f(xk) + µkB(xk). This method leads to the following lemmas:

Lemma 17.1 r(µk, xk) ≥ r(µk+1, xk+1)

Lemma 17.2 B(xk) ≤ B(xk+1)

Lemma 17.3 f(xk) ≥ f(xk+1)

Lemma 17.4 f(x∗) ≤ f(xk+1) ≤ f(xk) ≤ r(µk, xk)

The proof for lemma 17.1 is as follows:

Proof:

r(µk, xk) = f(xk) + µkB(xk)

≥ f(xk) + µk+1B(xk) as ck < ck+1

≥ f(xk+1) + µk+1B(xk+1) as xk+1 is optimal for µk+1

= r(ck+1, xk+1)

The proof for lemma 17.2 is as follows:

Proof:

(1) f(xk) + µkB(xk) ≤ f(xk+1) + µkB(xk+1) as xk is optimal with ck
(2) f(xk+1) + µk+1B(xk+1) ≤ f(xk) + µk+1B(xk) as xk is optimal with ck+1

Combining (1) and (2) ⇒

µkB(xk) + µk+1B(xk+1) ≤ µkB(xk+1) + µk+1B(xk)

⇒ (µk − µk+1)B(xk) ≤ (µk − µk+1)B(xk+1)

⇒ B(xk) ≤ B(xk+1) as µk+1 < µk
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The proof for lemma 17.3 is as follows:

Proof:

f(xk) + µk+1B(xk) ≥ f(xk+1) + µk+1B(xk+1) as xk+1 is optimal with ck+1

≥ f(xk+1) + µk+1B(xk) using Lemma 17.2

⇒ f(xk) ≥ f(xk+1)

The proof for lemma 17.4 is as follows:

Proof:

f(x∗) ≤ f(xk) as x∗ is optimal in S and xk ∈ S
≤ f(xk) + µkB(xk)

= r(µk, xk)

17.3 Primal Log Barrier Method for LPs

Given a primal LP as:

min
x
cTx s.t. Ax = b, x ≥ 0, x ∈ Rn

its corresponding barrier penalized problem B(µ) is:

B(µ) : min
x
cTx− µ

n∑
j=1

log(xj) s.t. Ax = b

For simplicity we define a diagonal matrix (Dx)ii = xi. Let e be a n × 1 vector of ones. The derivatives of
the objective function are:

g(x) = ∇f(x) = c− µD−1
x e

G(x) = ∇2f(x) = µD−1
x

Let x̄ be a feasible solution to the penalty function to B(µ) and define x+ = x̄+ ∆x. We can approximate
f(x) with a quadratic (2nd order) Taylor expansion:

f(x) = f(x̄) +∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x)(x− x̄)

= f(x̄) + g(x̄)T∆x+
1

2
∆xTG(x)∆x

= Q(∆x)
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We can now formulate the function as the following LP:

min
∆x

Q(∆x)

s.t. A(x̄+ ∆x) = b

A(x̄) = b

⇒ A∆x = 0

This LP has the following Lagrangian:

L(∆x, πx) = g(x̄)T∆x+
1

2
∆xTG(x̄)∆x0πTx [A∆x]

∂∆xL = g(x̄) +G(x̄)∆x− (πTxA)T = 0

= c− µD−1
x e+ µD−2

x

∂πxL = −A∆x = 0[
µD−2

x AT

A 0

] [
−∆x
πx

]
=

[
c− µD−1

x e
0

]

This linear system can be used to solve for ∆x and πx. We can enforce the inequality and equality constraints
with log penalty terms:

min f(x) = cTx− µ
n∑
j=1

log xj , s.t. Ax = b

min
Ax≤b

f(x) = cTx− µ
n∑
i=1

log bi − aTi x, where ai is the ith row of A

Iteratively solving this with the scheduled µs can be viewed as an interior point method, where x(µ∗) is the
central path.

17.4 Primal-Dual Log Barrier Problem

17.4.1 Formulations

Symmetric Form I:
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Figure 17.1: Interior method path

(P ) max
x

cTx

s.t. Ax ≤ b
x ≥ 0

(D) min
y
yT b

s.t. yTA ≥ cT

y ≥ 0

Duality gap: cTx ≤ yTAx ≤ yT b

Symmetric Form II:

(P ) min
x
cTx

s.t. Ax ≥ b
x ≥ 0

(D) max
y

yT b

s.t. yTA ≤ cT

y ≥ 0

Duality gap: yT b ≤ cTx

Asymmetric Form I:
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(P ) max
x

cTx

s.t. Ax ≤ b⇒ Ax+ s = b

x ∈ Rn

(D) min
y
yT b

s.t. yTA = cT

y ≥ 0

Duality gap: bT y − cTx = (Ax+ s)T y − yTAx = sT y ≥ 0

Asymmetric Form II:

(P ) max
x

cTx

s.t. Ax = b

x ≥ 0

(D) min
y
yT b

s.t. yTA ≤ cT ⇒ yTA+ sT = cT

y ∈ Rm

Duality gap: cTx− bT y = sTx ≥ 0

17.4.2 KKT Conditions

Stationarity

∇xf(x) + yT∇x(b−Ax) = 0

(c− µD−1
x e)T + yT (−A) = 0

c− µD−1
x e = AT y

Let s = µD−1
x e. The stationary condition rewritten is:

1

µ
Dxs = e

1

µ
DxDse = e

The overall conditions are:
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Ax = b, x > 0

AT y + s = c

1

µ
DxDse = e

s ≥ 0

Lemma 17.5 If (x, y, s) is a solution of the above KKT conditions, then the following are true:

• x is feasible for (P )

• (y, s) is feasible for (D)

• xT s = eTDxDse = µeT e = µn

The first two KKT conditions are linear in x and s, but the third is not. We can use instead the following
β-approximation:

‖ 1

µ
Dxs− e‖ ≤ β

Lemma 17.6 If (x̄, ȳ, s̄) is a β-approximate solution of the approximated KKT conditions and 0 ≤ β < 1,
we have the following bounds on the duality gap:

nµ(1− β) ≤ cT x̄− bT ȳ ≤ nµ(1 + β)

In addition, x̄ is feasible for (P ) and (ȳ, s̄) are feasible for (D).

The proof for 17.6 is as follows:

Proof:

Primal feasibility tells us that x̄ ≥ 0. We need to show that s̄ ≥ 0.

‖ 1

µ
Dxs− e‖ ≤ β

⇒ −β ≤ 1

µ
xjsj − 1 ≤ β

⇒ (1− β)µ ≤ xjsj ≤ µ(β + 1)

⇒ sj > 0

The duality gap is then:

nµ(1− β) ≤
n∑
j=1

xjsj

= xT s

≤ nµ(β + 1)
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We now solve the optimization using Newton’s method. At the current iteration x̄, ȳ, s̄, from KKT we have:

Ax̄ = b, x̄ > 0

AT ȳ + s̄ = c, s̄ > 0

1

µ
Dx̄Ds̄e− e = 0

The update step consists of x̄ → x̄ + ∆x, ȳ → ȳ + ∆y, and s̄ → s̄ + ∆s. This gives us the following KKT
expressions:

A(x̄+ ∆x) = b

AT (ȳ + ∆y) + (s̄+ ∆s) = c

(Dx +D∆x)(Ds +D∆s)e = µe

Combining with the previous iterate conditions, we have:

A∆x = 0

AT∆y + ∆s = 0

Dx̄D∆se+D∆xDs̄e = µe−Dx̄Ds̄e−D∆xD∆se

⇒ Dx̄∆s+Ds̄∆x = µe−Dx̄Ds̄e

where we have dropped the D∆xD∆s term since it is second order and small compared to the other terms.
These conditions give us a system of linear equations to solve for ∆x, ∆y, and ∆s. The barrier coefficient
is usually scaled at each iteration as µk+1 = αµk or set to x̄T s̄ n10 , where n is the current duality gap.

17.4.3 Algorithm

The final primal dual algorithm is given below:

Step 0 Initialization
Start with a feasible point (x0, y0, s0)

Step 1 Newton Step
Solve for ∆x, ∆y, and ∆s using the following equations:
A∆x = 0
AT y + ∆s = 0
Ds̄∆x+Dx̄∆s = µe−Dx̄Ds̄e

Step 2 Update Step
xk+1 = xk + ∆x
yk+1 = yk + ∆y
sk+1 = sk + ∆s

Step 3 Check
k = k + 1

µk+1 = αµk or 1
10
x̄T s̄
n , where n is the current duality gap

Go back to Step 1 until convergence

Theorem 17.7 Suppose that (x̄, ȳ, s̄) is a β-approximate solution of P (µ) for some 0 ≤ β < 1
2 . Let

(∆x,∆y,∆s) be the solution of the primal-dual newton system, and let (x′, y′, s′) = (x̄, ȳ, s̄) + (∆x,∆y,∆s).
Then (x′, y′, s′) is a 1+β

(1−β)2 β
2-approximate solution of P (µ).


