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3.1 Pivot Transformation

Consider the following LP problem

min z s.t.

2x1 + 2x2 + 2x3 + x4 + 4x5 = z

4x1 + 2x2 + 13x3 + 3x4 + x5 = 17

x1 + x2 + 5x3 + x4 + x5 = 7

x1, . . . , x5 ≥ 0

(3.1)

We define a pivot to be a nonzero element in the above problem, for example 3x4. We choose a pivot,
then use it to eliminate the corresponding variable (in this case, x4) from the remaining equations. After we
apply a pivot transformation we arrive at an equivalent system of equations, where the solution set is left
the same. This process is equivalent to Gaussian elimination. The pivot transformation procedes as follows.

We begin with an initial system of equations

2x1 + 2x2 + 2x3 + x4 + 4x5 = z

4x1 + 2x2 + 13x3 + 3x4 + x5 = 17

x1 + x2 + 5x3 + x4 + x5 = 7

(3.2)

We choose 3x4 as a pivot and aim to eliminate x4 from the remaining equations. We begin by dividing the
second equation by 3 to get the system

2x1 + 2x2 + 2x3 + x4 + 4x5 = z

4x1

3
+

2x2

3
+

13x3

3
+ x4 +

x5

3
=

17

3
x1 + x2 + 5x3 + x4 + x5 = 7

(3.3)

Note that the coefficients for x4 in the first and third equations are now the same as the coefficient for x4 in
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the second equation. We then subtract the the second equation from the first and third equations to get

2x1

3
+

4x2

3
− 7x3

3
+ 0x4 +

11x5

3
= z − 17

3
4x1

3
+

2x2

3
+

13x3

3
+ x4 +

x5

3
=

17

3

−x1

3
+

x2

3
+

2x3

3
+ 0x4 +

2x5

3
=

4

3

(3.4)

Note that now x4 has been eliminated from equations one and three (i.e. the coefficient for x4 in these
equations is now 0). Next, we choose another pivot, such as x2

3 . We use this pivot (in the third equation)
to eliminate x2 from the first and second equations by subtracting 4-times the third equation from the first
equation, to get

2x1 + 0x2 − 5x3 + 0x4 + x5 = z − 11

4x1

3
+

2x2

3
+

13x3

3
+ x4 +

x5

3
=

17

3

−x1

3
+

x2

3
+

2x3

3
+ 0x4 +

2x5

3
=

4

3

(3.5)

And then by subtracting 2-times the third equation from the second equation, to get

2x1 + 0x2 − 5x3 + 0x4 + x5 = z − 11

2x1 + 0x2 + 3x3 + x4 − x5 = 3

−x1

3
+

x2

3
+

2x3

3
+ 0x4 +

2x5

3
=

4

3

(3.6)

We also multiply the third equation by 3 to get

2x1 + 0x2 − 5x3 + 0x4 + x5 = z − 11

2x1 + 0x2 + 3x3 + x4 − x5 = 3

−x1 + x2 + 2x3 + 0x4 + 2x5 = 4

(3.7)

We can now rewrite this as

−z + 2x1 + 0x2 − 5x3 + 0x4 + x5 = −11

2x1 + 0x2 + 3x3 + x4 − x5 = 3

−x1 + x2 + 2x3 + 0x4 + 2x5 = 4

(3.8)

The system written in this way is said to be in canonical form. In particular, we say that this system of
equations is in canonical form with respect to (−z), x4, and x2 variables, and that

x1, x3, x5 are independent (nonbasic) variables

−z, x4, x2 are dependent (basic) variables, which are expressed in terms of other variables.

If we set the nonbasic variables to zero, then we can get values for the basic variables. For example,
setting x1 = 0, x3 = 0, and x5 = 0, i.e. by setting XN = (x1, x3, x5) = (0, 0, 0) we get that z = 11,
XB = (x4, x2) = (3, 4).

Note that if we had initially started with a different pivot, say x1 and then x4 (instead of x4 and then x2),
then we would’ve arrived at z = 3, XN = (x2, x3, x5) = (0, 0, 0), and XB = (x1, x4) = (−4, 11).
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3.1.1 The Goals of Pivots

The primary goal of the pivoting procedure is to reduce the original LP problem to canonical form. After
a reduction to canonical form, it is easy to find a (basic) solution to the system of equations. To do so, we
simply set the nonbasic variables to zero. Note that this procedure returns a valid solution, because the
pivoting process does not alter the solution set of the system of equations (i.e. after pivots, the systems are
equivalent).

However, the basic solution returned by the pivoting process might be:

1. Not a feasible solution. This could occur because of the boundary constraint (e.g. we required that
x1, . . . , x5 > 0, in the case of the previous example).

2. Not an optimal solution. For example, z might not be minimal.

3.1.2 Formal Definition of Canonical Form

A system of m equations and n nonbasic variables (xj)
n
j=1 is in canonical form with respect to m basic

variables (xji)
m
i=1 if and only if either of the two equivalent conditions hold:

1. xji has one coefficient in equation i, for all j 6= i.

2. The system ImXB + AXN = b

Using the previous example, the second condition would be equivalent to

M =

1 0 0
0 1 0
0 0 1

−zx4

x2

+

 2 −5 1
2 3 −1
−1 2 2

x1

x3

x5

 =

−11
3
4


We more-formally define a basic solution to be the solution gained by setting XN = 0 in the canonical
form.

For example, if we let

XB = (x1, . . . , xm)

XN = (xm+1, . . . , xn)

then we’d set xm+1, . . . , xn = 0, and would arrive at the solutions x1 = b1, . . . , xm = bm. This basic solution
is feasible if and only if b1 ≥ 0, . . . , bm ≥ 0.

3.2 Warming up to the simplex algorithm

3.2.1 Starting from Canonical Form

Let’s assume that we have a system of equations in canonical form, as well as a feasible basic solution:

w
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Recall that we have the additional constraints that xi ≥ 0∀i = 1, ..., n, and that the coefficients ci are called
relative cost factors (these may be different in a different canonical form basis). This system can be written
in matrix notation as well:

[
1 0 C
0 Im A

]−zxB

xN

 =

[
−z0
b

]
(3.9)

In this form, the basic solution is z = z0, and the assignments are xB = b and xN = 0. The solution is
feasible if and only if b ≥ 0.

3.2.2 Improving a Nonoptimal Basic Solution

Let’s continue the example from the previous section:

−z + 2x1 + 0x2 − 5x3 + 0x4 + 1x5 = −11

2x1 + 0x2 + 3x3 + 1x4 − 1x5 = 3

− x1 + 1x2 + 2x3 + 0x4 + 2x5 = 4

(3.10)

The basic feasible solution here is that z = 11, with assignments xB = (x4, x2) = (3, 4) and xN =
(x1, x3, x5) = (0, 0, 0).

Recall that our goal is to minimize z such that xi ≥ 0. How can we improve our current solution?

Examine the relative cost factors of the variables in xN , and notice that x3 has a negative cost factor. If we
make x3 > 0, we have a chance to reduce z.

To see how much we can increase x3 while maintaining feasibility, we keep x3,−z, and xB = (x2, x4) as
parameters while setting xN = (x1, x5) = (0, 0). Our system now becomes:

z = 11 − 5x3

x4 = 3 − 3x3

x2 = 4 − 2x3

(3.11)

So we can decrease x3 as much as we want as long as x4 ≥ 0 and x2 ≥ 0. The limiting factor in this case is
x4 which is 0 when x3 = 1. If we think of this in matrix form as Ax = b:

[
2 0 3 1 −1
−1 1 2 0 2

]
0
x2

x3

x4

0

 =

[
3
4

]
(3.12)

We are comparing the ratios b1
A13

= 3
3 = 1 and b2

A23
= 4

2 = 2, so in this case b1
A13

< b2
A23

. The conclusion is the
same: we can only increase x3 enough to make x4 = 0.

Thus, we move x4 from xB to xN , and x3 moves into xB .
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This is equivalent to taking equation 3.10 and using Gaussian elimination with x3 as a pivot variable:

−z + 2x1 + 0x2 − 5x3 + 0x4 + 1x5 = −11

2x1 + 0x2 + 3x3 + 1x4 − 1x5 = 3

− x1 + 1x2 + 2x3 + 0x4 + 2x5 = 4

(3.13)

We perform three changes: multiply the second equation by 5
3 and add it to the first equation, multiply the

second equation by −23 and add it to the third equation, and finally divide the second equation by 3. This
gets us:

−z + (
10

3
+ 2)x1 + 0x2 + 0x3 +

5

3
x4 + (1− 5

3
)x5 = −11 + 5

2

3
x1 + 0x2 + 1x3 +

1

3
x4 − 1

3
x5 = 1

(−4

3
− 1)x1 + 1x2 + 0x3 − 2

3
x4 + (2 +

2

3
)x5 = 4− 2

(3.14)

Simplifying:

−z +
16

3
x1 + 0x2 + 0x3 +

5

3
x4 − 2

3
x5 = −6

2

3
x1 + 0x2 + 1x3 +

1

3
x4 − 1

3
x5 = 1

− 7

3
x1 + 1x2 + 0x3 − 2

3
x4 +

8

3
x5 = 2

(3.15)

Now the current solution is z = 6, with assignments xN = (x1, x4, x5) = (0, 0, 0) and xB = (x3, x2) = (1, 2).
Examining the first equation, we now see that c5 < 0, so we can improve our current solution by increasing
x5 the same way we just increased x3. Just as before, we keep z, xB , x5 as parameters and set xN to 0 so
that our system becomes:

z = 6 − 2

3
x5

x3 = 1 +
1

3
x5

x2 = 2 − 8

3
x5

(3.16)

In this case how much we can increase x5 is limited only by x2. In matrix form we have:

[
2
3 0 1 1

3 − 1
3

− 7
3 1 0 − 2

3
8
3

]
0
x2

x3

0
x5

 =

[
1
2

]
(3.17)
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Performing the same comparison as before, between b1
A15

and b2
A25

, we get that −3 < 3
4 , however, we want to

keep every xi ≥ 0, so again, the limiting factor is x2. Note that if both of these ratios were less than zero,
we could minimize z to −∞ by increasing x5.

We can thus pivot on x5 by setting it to 3
4 . While we could pivot on either equation containing x5 in 3.15,

the only pivot that will get us a feasible solution is the one that moves x2 into xN . Applying Gaussian
elimination by pivoting on x5 in the third equation, our system is now:

−z +
57

12
x1 +

1

4
x2 + 0x3 +

3

2
x4 + 0x5 = −11

2
3

8
x1 +

1

8
x2 + 1x3 +

1

4
x4 − 0x5 =

5

4

− 7

8
x1 +

3

8
x2 + 0x3 − 2

8
x4 + 1x5 =

3

4

(3.18)

The solution is that z = 11
2 , with xB = (x3, x5) = ( 5

4 ,
3
4 ) and xN = (x1, x2, x4) = (0, 0, 0). Looking at the

first equation, we see that every cost factor is positive, meaning that we cannot improve z any further - we’re
done!

3.3 The Simplex Algorithm

3.3.1 Key Components of the Algorithm

In this example, we traced the simplex algorithm by hand. The key takeaways are:

1. We check for optimality by making sure that each cj ≥ 0∀j. If this holds, then our basic feasible
solution is optimal.

2. If the optimality condition is not met, we then must bring one variable into xB (the variable with the
most negaive cj), and send another variable to xN in exchange.

3. We choose the variable to send to xN by ensuring that our non-negativity constraints (xj ≥ 0∀j) are
met.

3.3.2 Overview of Algorithm Steps

In the simplex algorithm, we assume that we start with a system in feasible canonical form:

−z + 0xB = CTxN = −z0
IxB + AxN = b

(3.19)

The starting solution is xB = b, xN = 0, and z = z0.

Then we complete the following steps:

1. Find the smallest reduced cost, i.e. find cs = minjcj and s = argminjcj
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2. Test for optimality: if cs ≥ 0 return the current solution and stop.

3. If cs < 0, then we move xs to xB

4. Test for unbounded z: if every entry in the sth column of A, then z∗ = −∞ by setting xs →∞

5. If z is bounded, then we choose the variable to move to xN in exchange for xs. We find r =
argmini|Ais>0

bi
Ais

Thus we pivot on the basic variable that is in the rth row of A.

6. Pivot on Ars to get a new basic feasible solution z̃, regardless of whether z changes (if br = 0, it will
not change z). z̃ = z0 − br

−cs
Ars

How do we know that our solution (following the method in step 5) will still be feasible?

Lemma 3.1 The new basic solution remains feasible, b̃j ≥ 0∀j

Proof:

b̃j = bj − br
Ajs

Ars
(3.20)

Assume bj ≥ 0 (i.e. that the previous solution was feasible). If Ajs ≤ 0, then b̃j ≥ 00. If Ajs > 0, then recall

that we chose r so that br
Ars
≤ bj

Ajs
∀j. Thus, b̃j ≥ 0.

Notice that in step 6 we specifically stated that z does not have to change. This could potentially lead to
an infinite cycle between values that do not change z. We can prevent this by using Bland’s Rule:

Whenever the pivot in the simplex method would result in not change of the objective z, do the following:

1. Choose from among the incoming column choices j ∈ s s.t. cj < 0 the column with the smallest index
j. (Step 3)

2. Choose from among the multiple outgoing column choices the eligible column with the smallest index.
(Step 5)

3.4 Summary of the simplex algorithm

The simplex algorithm can be used for linear programs in standard form:

minimize
x≥0

cTx

subject to Ax = b,
(3.21)

where c, x ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

Theorem 3.2 A basic feasible solution is optimal with total cost z0 if all relative cost factors are nonnegative;
i.e., if c ≥ 0 ∈ Rn.

Proof:

−z + cm+1xm+1+ ...+ cjxj+ ...+ cnxn = − z0

x1 + a1,m+1xm+1+ ...+ a1,jxj+ ...+ a1,nxn = b1

. . .
...

...

xm+ am,m+1xm+1+ ...+ am,jxj+ ...+ am,nxn = bm

(3.22)
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Since c ≥ 0, increasing any xj : j ∈ {1, ...,m} (and adjusting the other xj ’s to obey the equality constraints)
cannot decrease the objective z.

Theorem 3.3 A basic feasible solution is the unique optimal solution with total cost z0 if cj > 0 for all
non-basic variables.

Theorem 3.4 Assuming “non-degeneracy” at each iteration (i.e., b > 0 ∈ Rm), the simplex algorithm
converges in finitely many steps.

Proof: If a linear program is nondegenerate, then it does not have any redundant constraints. Therefore,
it is not possible to cycle through any of the finite number of bases (i.e., selections of basic variables) when
executing the simplex algorithm.

3.5 Phase I

Phase I finds a starting basic feasible solution in canonical form, which Phase II then improves to the optimal
solution.

Introduce m new optimization variables to the original linear program in (3.21), one for each row of the

constraint matrix: xnew = [x1, ..., xn, xn+1, ..., xn+m]
T

and augment the constraint matrix Anew = [A Im].
Solve the new linear program

minimize
xnew≥0

w =

n+m∑
i=n+1

xnew,i

subject to Anewxnew = b.

(3.23)

Theorem 3.5 (3.23) has a feasible optimal solution such that xn+1 = ... = xn+m = 0 iff (3.21) has a
feasible solution.

3.6 Example of the simplex algorithm

The minimization problem:

minimize
x≥0

2x1+ x2+2x3+ x4+4x5 =z

subject to 4x1+ 2x2+13x3+ 3x4+x5 =17

x1+ x2+5x3+ x4+x5 =7.

(3.24)

3.6.1 Phase I

Introduce two new optimization variables, x6, x7 ≥ 0, disregard the original optimization objective, and solve
the new minimization problem

minimize
x≥0

x6+ x7 = w

subject to 4x1+2x2+ 13x3+3x4+ x5+x6+ 0x7 = 17

x1+x2+ 5x3+x4+ x5+0x6+ x7 = 7.

(3.25)
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The following stages of the algorithm are shown in tableaux form.

First, convert the problem to canonical form by subtracting the two constraint equations from the objective
to give the basic variables (x6, x7) zero coefficients in the objective:

Basic variable x1 x2 x3 x4 x5 x6 x7 RHS
−w -5 -3 -18 -4 -2 0 0 -24
x6 4 2 13 3 1 1 0 17
x7 1 1 5 1 1 0 1 7

Since c3 = −18 = min cj < 0, pivot on x3. x3 will replace x6 as a basic variable since r6 = 17
13 < 7

5 = r7:

Basic variable x1 x2 x3 x4 x5 x6 x7 RHS
−w 7/13 -3/13 0 2/13 -8/13 18/13 0 -6/13
x3 4/13 2/13 1 3/13 1/13 1/13 0 17/13
x7 -7/13 3/13 0 -2/13 8/13 -5/13 1 6/13

Now c5 = −8/13 = min cj < 0, so pivot on x5. Because r7 = 6/13
8/13 < 17/13

1/13 = r3, x7 will go out when x5

comes in:

Basic variable x1 x2 x3 x4 x5 x6 x7 RHS
−w 0 0 0 0 0 1 1 0
x3 3/8 1/8 1 1/4 0 1/8 -1/8 5/4
x5 -7/8 3/8 0 -1/4 1 -5/8 13/8 3/4

Since c ≥ 0, we have reached an optimal feasible solution to (3.25). Set the nonbasic variables to zero:
x1 = x2 = x4 = x6 = x7 = 0; set the basic variables to the RHS: x3 = 5/4 and x5 = 3/4.

3.6.2 Phase II

By Theorem 3.5, the optimal feasible solution found in Phase I will also be a feasible solution to the original
linear program, with the original minimization objective, z = 2x1 + x2 + 2x3 + x4 + 4x5. We can include
this cost function in the previous table and continue with Phase II to improve this feasible solution:

Basic variable x1 x2 x3 x4 x5 x6 x7 RHS
−z 2 1 2 1 4 0 0 0
x3 3/8 1/8 1 1/4 0 1/8 -1/8 5/4
x5 -7/8 3/8 0 -1/4 1 -5/8 13/8 3/4

The final solution to this linear program is x = [0, 2, 1, 0, 0]
T

, which achieves z = 4.


