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5.1 Convex Sets

5.1.1 Closed and open sets

Let C ⊆ Rn.

Definition 5.1 The affine hull of C is the smallest affine set that contains C.
aff(C) = {∑k

i=1 θixi|xi ∈ C,
∑k
i=1 θi = 1, θi ∈ R}.

An example of an affine set is the solution set of a system of linear equations, C = {x|Ax = b}, A ∈
Rm×n, B ∈ Rn. If x1, x2 ∈ C, θ ∈ R, then A(θx1 + (1− θ)x2) = θAx1 + (1− θ)Ax2 = θb+ (1− θ)b = b.

Let x be some point in Rn, and B(x, ε) be a ball of radius ε centered at x. Then

Definition 5.2 x is on the boundary of C, ∂C, if for all ε > 0, B(x, ε) ∩ C 6= ∅ and B(x, ε) ∩ Cc 6= ∅.

Definition 5.3 x is in the interior of C, int C, if ∃ ε > 0 : B(x, ε) ⊂ C.

Definition 5.4 x is in the relative interior of C, rel int C, if ∃ ε > 0 : B(x, ε) ∩ aff(C) ⊆ C.

Definition 5.5 The closure of C, cl C = C ∪ ∂C.

Definition 5.6 The relative boundary of C, rel ∂C = cl C\rel int C.

Definition 5.7 C is closed if ∂C ⊂ C, open if ∂C ∩C = ∅, and compact iff it is closed and bounded in Rn.
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5.1.2 Convex sets and examples

Figure 5.1: Example of a convex set (left) and a non-convex set (right).

Definition 5.8 A set C ⊆ Rn is convex iff the line segment between any two points in C is completely
contained in C.
C is convex ⇐⇒ ∀x1, x2 ∈ C, ∀θ ∈ [0, 1], θx1 + (1− θ)x2 ∈ C.

This definition of convexity holds for any number of points in C, even infinite countable sums: C is convex
⇐⇒ ∀xi ∈ C, θi ≥ 0, i = 1, 2, . . . ,∞,∑∞i=1 θi = 1, the convex combination

∑∞
i=1 θixi ∈ C, if the series

converges.
In general, C is convex iff for any random variable X over C, P (X ∈ C) = 1, its expectation is also in C:
E(X) =

∫
C
xP (x)dx ∈ C, if the integral exists.

Definition 5.9 C is strictly convex ⇐⇒ ∀x1 6= x2 ∈ C, ∀θ ∈ (0, 1), θx1 + (1− θ)x2 ∈ int C.

Intuitively, C is a strictly convex set iff a line segment between two points on the boundary, x1 and x2,
intersects the boundary only at x1 and x2.
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Figure 5.1: Lp norm balls are convex sets for p ≥ 1, and non-convex for p < 1.
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Some examples of convex sets:

• The empty set ∅, the singleton set {x0}, and the complete space Rn.

• Lines {x ∈ Rn|x = θx1 + (1 − θx2), x1, x2 ∈ Rn, θ ∈ R}, and line segments {x ∈ Rn|x = θx1 + (1 −
θx2), x1, x2 ∈ Rn, θ ∈ [0, 1]}

• Hyperplanes {x ∈ Rn|aTx = b, a ∈ Rn, b ∈ R}, and halfspaces {x ∈ Rn|aTx ≤ b, a ∈ Rn, b ∈ R}

• Euclidean balls B(x0, r) = {x ∈ Rn|‖x0 − x‖2 ≤ r}

• Lp balls, p ≥ 1.{x ∈ Rn|‖x0 − x‖p ≤ r}, where ‖x‖p = (
∑n
i=1 |xi|p)

1
p . Lp balls for p ∈ (0, 1) are not

convex.

• Polyhedron: the solution set of a finite number of linear equalities and inequalities. P = {x ∈ Rn|aTj x ≤
bj , j = 1, . . . ,m, cTi x = di, i = 1, . . . , p}, or P = {x|Ax ≤ b, Cx = d}

• Polytope (bounded polyhedron), intersection of halfspaces and hyperplanes.

5.1.3 Convex and conic hulls

Definition 5.10 The convex hull of a set C, conv[C] = {∑k
i=1 θixi|xi ∈ C, θi ≥ 0 ∀i = 1, . . . , k,

∑k
i=1 θi =

1, k ∈ Z+}.

Properties of convex hull:

• conv[C] is the smallest convex set that contains C.

• conv[C] is convex.

• C ⊆ conv[C]

• ∀C,C ′ convex sets, C ⊂ C ′ =⇒ conv[C] ⊆ C ′

Definition 5.11 C is a cone ⇐⇒ x ∈ C, θ ≥ 0 =⇒ θx ∈ C. A convex cone is a cone which is also a
convex set.

Definition 5.12 The conic hull of a set C, cone[C] = {x|x = θ1x1 + . . .+ θkxk, θi ≥ 0, xi ∈ C}

An example of a convex cone is the set of symmetric PSD matrices, Sn+ = {A ∈ Rn×n|A � 0}. If A,B ∈
Sn+, θ ≥ 0, then xT (θA+ (1− θ)B)x = θxTAx+ (1− θ)xTBx ≥ 0.
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5.1.4 Convex set representations

Figure 5.1: Representation of a convex set as the convex hull of a set of points (left), and as the intersection
of a possibly infinite number of halfspaces (right).

5.1.4.1 Convex hull representation

Let C ⊆ Rn be a closed convex set. Then C can be written as conv(X), the convex hull of possibly infinitely
many points (|X| =∞). Also, any closed convex set is the convex hull of itself.

5.1.4.2 Dual representation with halfspaces

Let C ⊆ Rn be a closed convex set. Then C can be written as ∪i{x|aTi x + bi ≤ 0}, the intersection of
possibly infinitely many closed halfspaces. Also, every closed convex set is the intersection of all halfspaces
that contain it.

5.1.5 Covexity preserving operations

Let C ∈ Rn be a convex set. Then, the following operations preserve convexity:

• Translation C + b

• Scaling αC

• Intersection If D is a convex set, then C ∩D is convex. In general, if Sα is a convex set ∀α ∈ A, then
∩α∈ASα is convex.

• Affine function Let A ∈ Rm×n, and b ∈ Rn. Then AC + b = {Ax+ b|x ∈ C} ⊆ Rm is convex.

• Set Sum Let C1 ⊆ Rn and C2 ⊆ Rm be convex sets. Then C1 + C2 = {x1 + x2|x1 ∈ C1, x2 ∈ C2} is
convex.

• Direct Sum C1 × C2 = {(x1, x2) ∈ Rn+m, x1 ∈ C1, x2 ∈ C2}
• Perspective projection(pinhole camera) If C ⊂ Rn×R++ is a convex set, then P (C) is also convex,

where
P (x) = P (x1, x2, . . . , xn, t) = (x1/t, x2/t, . . . , xn/t) ∈ Rn

• Linear fractional function Let f(x) = Ax+b
cT x+d

, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, d ∈ R,dom f = {x|cTx+
d > 0}. Then f(C) ∈ Rm is convex.

An operation which does not preserve convexity is set union.
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5.1.6 Separating hyperplane theorem

Figure 5.1: The hyperplane {x|aTx = b} separates the disjoint convex sets C and D

Theorem 5.13 For convex sets C,D ⊆ Rn, C ∩ D = ∅,∃a ∈ Rn, b ∈ R, such that ∀x ∈ C, aTx ≤ b,∀y ∈
D, aT y ≥ b.

Let C1 and C2 be two convex sets. Then

Definition 5.14 C1 and C2 are strongly separated if aT [C1 +B(0, ε)] > b and aT [C2 +B(0, ε)] < b.

Definition 5.15 C1 and C2 are properly separated if it is not the case that both C1 ⊆ {x : aT = b} and
C2 ⊆ {x : aTx = b}

Definition 5.16 C1 and C2 are strictly separated if aTx > b∀x ∈ C1 and aTx < b∀x ∈ C2.

Theorem 5.17 If C1, C2 are non-empty convex sets in Rn, with cl C1 ∩ cl C2 = ∅, and either C1 or C2

bounded, there exists a hyperplane separating C1 and C2 strongly.

Consider x = (x1, x2) ∈ R++ × R. An example where strong separation fails is when C1 = {x|x2 ≥ 1
x1
},

C2 = {x|x2 ≤ 0}. Here, x2 = 0 separates C1 and C2, but does not strongly separate them, since neither of
the sets are bounded.

Theorem 5.18 If C1, C2 are non-empty convex sets in Rn, there exists a hyperplane separating C1 and C2

strongly ⇐⇒ infx1∈C1,x2∈C2
{|x1 − x2|} > 0 ⇐⇒ dist(C1, C2) > 0 ⇐⇒ 0 ∈ cl (C1 − C2).
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5.1.7 Supporting hyperplane theorem

Figure 5.1: The hyperplane {x|aTx = aTx0} supports C at x0/

Theorem 5.19 For any convex set C and any boundary point x0, there exists a supporting hyperplane for C
at x0. That is, for any x0 ∈ ∂C,∃ a hyperplane {x|aTx = b, a 6= 0}, such that ∀x ∈ C, aTx ≤ aTx0, aTx0 = b.

The partial converse of the supporting hyperplane theorem says that if a set is closed, has a non-empty
interior, and has a supporting hyperplane at every point in its boundary, then it is convex.

5.1.8 Proving a set convex

To summarize, one can prove that a set is convex using any of the following:

• Definition of convexity

• Representation as a convex hull

• Representation as the intersection of halfspaces

• Partial converse of the supporting hyperplane theorem

• Using convexity-preserving operations on simple sets to build up C

References

[Boyd2004] S. Boyd and L. Vandenberghe,“Convex optimization”, Cambridge University Press, 2004

5.2 Convex functions

Definition 5.20 A function f is convex if :
1. Domain of f is a convex set.
2. f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
∀x, y ∈ Domf
∀θ ∈ [0, 1]
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Figure 5.1: Graphic interpretation of convex function

Definition 5.21 Strictly convex function
f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)
∀x, y ∈ Domf
∀θ ∈ [0, 1]

Definition 5.22 If -f is convex, then f is concave.

Definition 5.23 Strongly convexity
(5f(x)−5f(y))T (x− y) ≥ m ‖ y − x‖22
or equivantly,
f(y) ≥ f(x) +5f(x)T (y − x) + m

2 ‖ y − x‖
2
2

If without gradient: ∃t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1
2mt(1− t) ‖ x− y‖

2
2

If with Hessian:
52f(x) � mI

Note: A strongly convex function is also strictly convex, but not vice versa.

Example:
f(x) = x4 is convex, strictly convex, not strongly convex.
f(x) = |x| is convex, not strictly convex.
Convex functions:
|x|p, (p ≥ 1), f(x) = max(x1, ..., xn)
Concave functions:
f(x) = (

∑n
i=1 xi)

1/n, log(x)
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Theorem 5.24 Extended reals
Let

f̃ =

{
f(x) x ∈Dom f
∞ x 6∈Dom f

Then f is convex means f̃ is also convex.

Definition 5.25 Epigraph:
Epi(f) = {(x, t) : x ∈ Domf, t ≥ f(x)}
If f is convex, then Epi(f) is a convex set

Figure 5.2: Illustration of epigraph

5.2.1 Convex function properties

5.2.1.1 0th order characterization

f is convexity, iff, g(t) = f(x+ tv) is convex.

5.2.1.2 1st order characterization

Let f be differentiable, f is convex, iff f(y) ≤ f(x) +5f(x)T (y − x),∀y

5.2.1.3 2nd order characterization

Let f be twice differentiable, f is convex iff 52f(x) ≤ 0,∀x ∈ domain

5.2.1.4 Jensen’s inequality

f is convex, so f(Ex) ≤ Ef(x)
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Figure 5.3: Illustration of Jensen’s inequality

5.2.2 Proving a function convex

Use definition directly
Prove that epigraph is convex via set methods
0th, 1st, 2nd order convexity properties
Construct f from simpler convex functions using convexity preserving operations

5.2.3 Convexity-preserving function operations

Nonnegative weighted sum
Pointwise max/sup
Extension of pointwise max/sup
Affine map
Composition
Perspecive map

5.3 Gradient Descent

5.3.1 Choose step size

Recall that we have f : Rn → R, convex and differentiable. We want to solve

min
x∈Rn

f(x)
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i.e, to find x? such that f(x?)=min f(x) .

Gradient descent: choose initial x(0) ∈ Rn , repeat :

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, ...

Stop at some point(When to stop is quite dependent on what problems you are looking at).

Figure 5.1 is shows a example that we cannot always continue and it depends where we start. i.e. If we start
at a spot somewhere between the purple and orange, it would stay there and go nowhere.

Figure 5.4:
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At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)
T

(y − x) +
1

2t
‖y − x‖2

We can use quadratic approximation, replacing usual ∇2 f(x) by 1
t I, then we have

f(x) +∇f(x)T (y − x),

which is a linear combination to f , and
1

2t
‖y − x‖2,

which is a proximity term to x, with weight 1
2t .

Then, choose next point y = x+ to minimize quadratic approximation

x+ = x− t∇f(x)

as shown in Figure 5.2.

5.3.2 Fixed step size

Simply take tk = t for all k = 1, 2, 3, , can diverge if t is too big. Consider f(x) = (10x1
2 +x2

2/2), Figure 5.3
shows the gradient descent after 8 steps. It can be slow if t is too small . As for the same example, gradient
descent after 100 steps in Figure 5.4, and gradient descent after 40 appropriately sized steps in Figure 5.5.
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Figure 5.5:
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Blue point is x, red point is x+

5

blue point is x, red point is x+

Convergence analysis will give us a better idea which one is just right.

Figure 5.6:

Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x2

1 + x2
2)/2, gradient descent after 8 steps:
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75.3.2.1 Backtracking line search

Adaptively choose the step size:

First, fix a parameter 0 < β < 1, then at each iteration, start with t = 1, and while

f(x−∇f(x)) > f(x)− tα‖∇f(x)‖2,
update t = βt, as shown in Figure 5.6 (from B & V page 465), for us 4x = −∇f(x), α = 1/2.

Backtracking line search is simple and work pretty well in practice. Figure 5.7 shows that backpacking
picks up roughly the right step size(13 steps) for the same example, with β = 0.8 (B & V recommend
β ∈ (0.1, 0.8)).
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Figure 5.7:

Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Figure 5.8:
Same example, gradient descent after 40 appropriately sized steps:
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This porridge is too hot! – too cold! – juuussst right. Convergence
analysis later will give us a better idea

9

5.3.3 Exact line search

At each iteration, do the best we can along the direction of the gradient,

t = argmin
s≥0

f(x− s∇f(x)).

Usually, it is not possible to do this minimization exactly.

Approximations to exact line search are often not much more efficient than backtracking, and it’s not worth
it.
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Figure 5.9:Interpretation

(From B & V page 465)

For us �x = �rf(x), ↵ = 1/2
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Figure 5.10:
Backtracking picks up roughly the right step size (13 steps):
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Here � = 0.8 (B & V recommend � 2 (0.1, 0.8))
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