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7.1 Recap.

The drawbacks of Gradient Methods are: (1) requires f is differentiable; (2) relatively slow convergence.
Subgradient methods have better property in (1) and sometimes better in (2).

x(k) = x(k−1) − tkg(k−1), k = 1, 2, 3, ..., (7.1)

Subgradient of convex function f at x is any g s.t.

f(y) ≤ f(x) + gT (y − x),∀ y (7.2)

7.1.1 Subgradient for Indicator Function

Indicator function is given as,

IC(x) =

{
0 if x ∈ C
∞ if x /∈ C.

Subgradient g for indication function should satisfy the following condition,

IC(y) ≥ IC(x) + gT (y − x)

The case for y /∈ C is trivial because then IC(y) =∞ and holds for ∀g. In case of y ∈ C, IC(y) = 0 and then
all possible g that satisfies gTx ≥ gT y for ∀y forms a subgradient set for point x; ∂IC(x) = {g : gT (x− y) ≥
0} = NC(x), which is called a normal cone at point x (if gT (x − y) ≥ 0 is true, then this holds for any αg
for α > 0 too, and thus g forms a cone).

7.1.2 Subgradient Examples

Example 1. Subgradient for f(x) = max(f1(x), f2(x)) (where both f1(x) and f2(x) are differentiable) is,

∂f(x) =


{∇f1(x)} if f1(x) > f2(x)

{∇f2(x)} if f1(x) > f2(x)

conv{∇f1(x),∇f2(x)} if f1(x) = f2(x).

This immediately follows from the subgradient property ∂f(x) = conv(
⋃
fi:active

∂fi(x)).

Example 2. Subgradient for ‖x‖p = maxy s.t.‖y‖q≤1y
Tx for dual norm ‖x‖p and ‖x‖q is,

∂‖x‖p = arg max
‖y‖q≤1

yTx =
x

‖x‖q
.

Since ∂f(x) = cl(conv(
⋃
fs:active

∂fs(x))) where fs(x) = yTx and ∂fs(x) = y.
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7.1.3 Extension to Constrained Optimization

min
x∈C

f(x), C = {x : gi(x) ≤ 0, hi(x) = 0}

= min
x∈Rn

f(x) + ZC(x)

x∗ is a minimizer

⇔ 0 ∈ ∂f(x∗) + ∂IC(x∗)

⇔ −v ∈ NC(x∗) for some v ∈ ∂f(x∗) for differentiable f

⇔ −∇f(x∗) ∈ NC(x∗)

⇔ ∇f(x∗)T (y − x) ≥ 0, ∀y ∈ C.

Example 1.

min
x∈C
‖y − x‖2 = min

x∈Rn

1

2
‖y − x‖2 + IC(x).

∇f(x) = x− y.x is optimal if: y − x ∈ NC(x)

⇔ (y − x∗)Tx∗ ≥ (y − x∗)Tu, ∀u ∈ C
⇔ (y − x∗)T (x∗ − u) ≥ 0, ∀y ∈ C.

Example 2.

β̂ = arg min
β

1

2
‖y − β‖22 + λ‖β‖1

There is a unique minimizer since quadratic part is strictly convex. Let f(β) = 1
2‖y − β‖

2
2 + λ‖β‖1, then

unique minimizer β∗ should satisfy,

∂f(β∗) 3 β∗ − y + λ∂‖β∗‖1 = 0.

Soft thresholding function β = Sλ(y) is a unique minimizer by checking the subgradient.

Sλ(y) =


yi − λ if yi > λ

0 if yi ∈ [−λ, λ]

yi + λ yi < −λ.

∂f(β) =


yi − λ− yi + λ∂‖β‖1 = 0 if yi > λ⇒
yi + λ− yi + λ∂‖β‖1 = 0 if yi < −λ
0− yi + λ∂‖β‖1 = 0 if yi ∈ [−λ, λ].
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7.2 Subgradient Method

7.2.1 Subgradient method

For convex f , not necessarily differentiable, subgradient method finds the lowest value of the criterion by:

x(k) = x(k−1) − tkg(k−1), , k = 1, 2, 3, · · ·

where g(k−1) is any subgradient of f at x(k−1). Note that it is not a decent method, that the next iterative
doesn’t always find the lower criterion. So we need to keep the best lowest criterion value at every iteration,

i.e., f(x
(k)
best) = mini f(x(i)).

7.2.2 Choosing the step size

i) Fixed step size: tk = t ∀k.
However, for subgradient method, we do not typically chose fixed step size.

ii) Diminishing step size (Standard): choose tk that is square summable but not summable.

∞∑
k=1

t2k <∞,
∞∑
k=1

=∞.

Note that step sizes are all pre-defined, not adaptively computed during the optimization iteration.

7.2.3 Convergence analysis

i) Fixed step size: Suboptimal Convergence.
For convex, not differentiable function f , if the function itself is Lipschitz with constant G such as,

|f(x)− f(y)| ≤ G‖x− y‖2 ∀x, y

subgradient method using fixed step size t would give a point that is suboptimal such as,

lim
k→∞

f(x
(k)
best) ≤ f(x∗) +G2 t

2
.

In other words, the smaller the step size, the smaller the difference would be between the optimal and sub-
optimal convergence.

ii) Diminishing step size that is square summable: Optimal Convergence.

lim
k→∞

f(x
(k)
best) = f(x∗).

Note that subgradient method is applicable to functions that may not look like Lipschitz, since the over the
bounded set the function can be Lipschitz.

7.2.4 Polyak step size

When the optimal value f(x∗) is known:

tk =
f(x(k−1))− f(x∗)

‖g(k−1)‖22
, k = 1, 2, 3, · · ·
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It is kind of impractical using the optimal value in the step size but it is important in that it gives the
convergence rate for the subgradient method. With this choose of the step size, if we want to compute an
estimate of the optimum value within the epsilon such as,

f(x
(k)
best)− f(x∗) ≤ ε

then we need O( 1
ε2 ) iterations (substantially smaller than O( 1

ε ) iterations in gradient descend method).

7.2.5 Finding intersection of convex sets

We want to find a point x∗ ∈ C1 ∩ · · · ∩ Cm, where Ci is a closed convex set, using subgradient method.
First define a convex optimization problem:

min
x∈C

f(x) = min
x∈C

max
i=1,··· ,m

fi(x)

Where fi(x) is the minimum distance between the point x and the set Ci, i.e. fi(x) = miny∈Ci
‖y − x‖2.

Note that fi(x) is convex function, and thus f(x) is also a convex function.

Subgradient g ∈ ∂f(x) would be the subgradient of fi(x), where f(x) = fi(x). Let PCi
(x) is the point that

minimizes the distance between x and y ∈ Ci, i.e. PCi(x) = arg miny∈Ci ‖x − y‖2. Then the gradient g
would be:

g = 5fi(x) =
(x− PCi

(x))

‖x− PCi(x)‖2
,

Applying subgradient method with Polyak step size,

x(k) = x(k−1) − f(x(k−1))
(x(k−1) − PCi

(x(k−1)))

‖x(k−1) − PCi
(x(k−1))‖2

= PCi
(x(k−1)).

Thus, the next update in the iteration would be finding the point that gives the minimum distance among
all sets. In case of just two sets, this is equivalent to alternating projection algorithm.

7.2.6 Projected subgradient method

Projected subgradient method can be used to minimize a convex function over a convex set C:

min
x∈C

f(x)

It is same as usual subgradient update except we project the solution back on to C every time so that at
every iteration we move in the direction of the subgradient but still lies in the set C.

x(k) = PC(x(k−1) − tkg(k−1)), k = 1, 2, 3, · · ·

Alternative method:
min
x∈C

f(x) = min
x∈Rn

f(x) + IC(x)

Examples for projection onto solution set C:
i) C = {y : yi ≥ ∀i} ⇒ [PC(x)]i = max{xi, 0}.
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ii) C = {x : Ax = b} = x0 + null(A).

PC(x) = arg min
v
‖x0 + v − x‖22 s.t. v ∈ null(A)

= B(BTB)−1BT (x− x0) + x0

= Pnull(A)(x− x0) + x0(Pnull(A) = B(BTB)−1BT )

= (I − Prow(A))(x− x0) + x0

= (I −AT (AAT )−1A)(x− x0)

= (I −AT (AAT )−1A)(x−AT (AAT )−1b) +AT (AAT )−1b

= x+AT (AAT )−1(b−Ax) (A has full row rank)

Therefore, Ax = b, x0 = AT (AAT )−1b.

7.2.7 Basic Pursuit Problem

We can use projected subgradient method to solve the basic pursuit problem:

min
β∈Rp

‖β‖1 s.t. Xβ = y.

In this case, the solution set is C = {β : Xβ = y}.
The projection on to solution set C is PC(β) = β +XT (XXT )−1(y −Xβ) as shown in example 2 above.
Projected subgradient method performs step

β(k) = PC(β(k−1) − tkg(k−1))
= β(k−1) − tkg(k−1) +X(XXT )−1(y −Xβ(k−1) +Xtkg

(k−1))

= β(k−1) − (I −XT (XXT )−1X)tkg
(k−1)

Where, g(k−1) ∈ ∂‖β(k−1)‖1.


