
Homework 1

Convex Optimization 10-725/36-725

Due Wednesday September 16 at 4:00pm
submitted to Mallory Deptola in GHC 8001
(Remember to submit each problem on a separate
sheet of paper, with your name on at the top)

1 Convex sets

(a) This is Boyd & Vandenberghe’s Exercise 2.12, copied here for your convenience. Identify which
of the following sets are convex, and provide a brief justification for each.

1. A slab, i.e., a set of the form {x ∈ Rn | α ≤ aTx ≤ β}.

2. A rectangle, i.e., a set of the form {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, ..., n}.

3. A wedge, i.e., a set of the form {x ∈ Rn | a1Tx ≤ b1, a2Tx ≤ b2}.

4. The set of points closer to a given point than a given set, i.e., {x | ‖x− x0‖2 ≤ ‖x− y‖2 ,∀y ∈
S}, where S ⊆ Rn.

5. The set of points closer to a set than another, i.e., {x | dist(x, S) ≤ dist(x, T )}, where S, T ⊆
Rn.

6. The set {x | x+ S2 ⊆ S1}, where S1, S2 ⊆ Rn with S1 convex.

7. The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b,
i.e., the set {x | ‖x− a‖2 ≤ θ ‖x− b‖2}. You can assume that a 6= b , and 0 ≤ θ ≤ 1.

(b) The Separating Hyperplane theorem ensures that two disjoint convex sets C and D can always
be separated by a hyperplane such that aTx ≤ b ∀x ∈ C, and aTx ≥ b ∀x ∈ D. However, strict
separability might not be always possible. Give an example of two closed disjoint convex sets that
are not strictly separable by a hyperplane. i.e., @ a ∈ Rn such that aTx < b ∀x ∈ C and aTx > b
∀x ∈ D

(c) Prove Farkas’ Lemma, which states that for A ∈ Rm×n and b ∈ Rm, exactly one of the following
is true:

• ∃ x ∈ Rn such that Ax = b, x ≥ 0

• ∃ y ∈ Rm such that AT y ≥ 0, yT b < 0

Hint: Consider the conic hull of the columns of A, and use the Separating Hyperplane theorem.
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2 Convex functions

(a) This is from B&V Additional Exercises 2.9 and 2.20(a) (separate from the main textbook). Prove
that the following functions are convex:

1. ‖Ax−b‖
2

1−xT x
on {x | ‖x‖2 < 1}

2. The difference between the maximum and minimum value of a polynomial on a fixed interval
as function of its coefficients,

f(x) = sup
t∈[a,b]

p(t)− inf
t∈[a,b]

p(t), where p(t) = x1 + x2t+ x3t
2 + · · ·xntn1

Here a and b are real constants, with a < b.

(b) Specify whether the function is strongly convex, strictly convex, convex, or nonconvex, and give
a brief justification for each.

1. f(x) = x log x for x > 0

2. f(x) = x4

3. f(x) = log(1 + ex)

4. f(x) = 1
2x

TQx for x ∈ Rn

(c) Using properties of convex functions, argue that the maximum value of a convex function over a
closed and bounded polyhedron {x | Ax ≤ b} is achieved at one of its vertices.

3 Lipschitz gradients and strong convexity

Let f be convex and twice differentiable.

(a) Show that the following statements are equivalent.

• ∇f is Lipschitz with constant L;

• ∇2f(x) � LI for all x;

• f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖

2
2 for all x, y.

(b) Show that the following statements are equivalent.

• f is strongly convex with constant m;

• ‖∇f(x)−∇f(y)‖2 ≥ m‖x− y‖2 for all x, y;

• ∇2f(x) � mI for all x;

• f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2
2 for all x, y.
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4 Solving optimization problems with CVX

CVX is a fantastic framework for disciplined convex programming—it’s rarely the fastest tool for
the job, but it’s widely applicable, and so it’s a great tool to be comfortable with. In this exercise
we will set up the CVX environment and solve a convex optimization problem.

In this class, your solution to coding problems should include plots and whatever explanation
necessary to answer the questions asked. In addition, full code should be submitted as an appendix
to the homework document.

(a) CVX variants are available for each of the major numerical programming languages. There are
some minor syntactic and functional differences between the variants but all provide essentially the
same functionality. The Matlab version (and by extension, the R version which calls Matlab under
the covers) is the most mature but all should be sufficient for the purposes of this class.

Download the CVX variant of your choosing

• Matlab - http://cvxr.com/cvx/

• Python - http://www.cvxpy.org/en/latest/

• Julia - https://github.com/JuliaOpt/Convex.jl

• R - http://faculty.bscb.cornell.edu/~bien/cvxfromr.html

and consult the documentation to understand the basic functionality. Make sure that you can solve
the least squares problem minβ ‖y − Xβ‖22 for a vector y and matrix X. Check your answer by
comparing with the analytic least squares solution.

(b) Using CVX, we will solve the 1d fused lasso problem discussed in Lecture 1:

min
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

|βi − βi+1|.

The data for this problem, y.txt and beta0.txt, are available on the class website.

1. Load the data y.txt and solve the 1d fused lasso problem with λ = 1. Report the objective
value obtained at the solution.

2. Next, we consider how the solution changes as we vary λ. Solve the optimization problem
for 100 logarithmically spaced values from 101 to 10−2 (in Matlab, logspace(1, -2, 100)).

For each λ, compute the mean squared error (MSE) of the solution β̂ and the true β0 (from

beta0.txt) as well as the number of changepoints in β̂. For numerical purposes, define a
changepoint to be absolute difference greater than 10−8. Plot MSE and number of changepoints
as a function of λ.

3. Find β̂ that minimizes the MSE in part (ii) and plot β̂, β0 and the data y. Is the MSE

minimized at the estimate β̂ that has the same number of jumps (changepoints) as the truth
β0? If not, is the estimate number of jumps at the MSE-optimal solution too small, or too
big? (Extra credit: can you explain what you see, statistically?)

(c) Disciplined convex programming or DCP is a system for composing functions while ensuring
their convexity. It is the language that underlies CVX. Essentially, each node in the parse tree for a
convex expression is tagged with attributes for curvature (convex, concave, affine, constant) and sign
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(positive, negative) allowing for reasoning about the convexity of entire expressions. The website
http://dcp.stanford.edu/ provides visualization and analysis of simple expressions.

Typically, writing problems in the DCP form is natural, but in some cases manipulation is
required to construct expressions that satisfy the rules. For each set of mathematical expressions
below (all define a convex set), give equivalent DCP expressions along with a brief explanation of
why the DCP expressions are equivalent to the original. DCP expressions should be given in a form
that passes analysis at http://dcp.stanford.edu/analyzer.

Note: this question is really about developing a better understanding of the various composition
rules for convex functions.

1. ‖(x, y, z)‖22 ≤ 1

2.
√
x2 + 1 ≤ 3x+ y

3. 1/x+ 2/y ≤ 5, x > 0, y > 0

4. (x+ y)2/
√
y ≤ x− y + 5, y > 0

5. (x+ z)y ≥ 1, x+ z ≥ 0, y ≥ 0

6. ‖(x+ 2y, x− y)‖2 = 0

7. x
√
y ≥ 1, x ≥ 0, y ≥ 0

8. log(ey−1 + ex/2) ≤ −ex
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