
Homework 2

Convex Optimization 10-725/36-725

Due Friday October 2 at 4:00pm
submitted to Mallory Deptola in GHC 8001
(Remember to submit each problem on a separate
sheet of paper, with your name on at the top)

1 Subgradient method convergence [Shashank]

In class, we proved the convergence rate for simple gradient descent for a differentiable convex
function f : Rn → R with Lipschitz gradient is O(1/ε). Said differently, the rate is O(1/k), and we
proved that

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

where 0 < t < 1/L, where t is a fixed step size, L is the Lipschitz constant of the gradient of f , x(0)

is the starting point, x? ∈ arg minx∈Rnf(x), f? = f(x?), and k is the number of iterations.
In this question, you will be proving the convergence rate for the sub-gradient method for a

convex function. Assume that:

• f is convex with dom(f) = Rn

• f is Lipschitz continuous with continuity parameter G

• At the kth step, the update is given by x(k) = x(k−1) − tk · g(k−1), where g(k−1) is an element
from the subdifferential of f at x(k−1)

(a) Using properties of the subgradient show that

‖x(k) − x?‖22 − ‖x(k−1) − x?‖22 ≤ −2tk
(
f(x(k−1))− f(x?)

)
+ t2k‖g(k−1)‖22

and then use a telescoping sum to show

‖x(k) − x?‖22 ≤ ‖x(0) − x?‖22 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+

k∑
i=1

t2i ‖g(i−1)‖22

(b) We know that the subgradient method is not a strict descent procedure. All through the

procedure, we need to keep track of the best iterate x
(k)
best such that f(x

(k)
best) = mini=0,...k f(x(i)).

Now, use the result in the previous part to prove that

f(x
(k)
best)− f(x?) ≤

R2 +G2
∑k
i=1 t

2
i

2
∑k
i=1 ti

where R = ‖x(0) − x?‖2

(c) From the basic inequality you just derived, verify the following results stated in class:

1

• For a fixed step size t, the subgradient method satisfies limk→∞ f(x
(k)
best) ≤ f? +G2t/2

• For diminishing step sizes, the subgradient method satisfies limk→∞ f(x
(k)
best) = f?

(d) Using the result in part (b), prove that for an appropriate fixed step size t, the subgradient
method takes O(1/ε2) iterations to get within ε-distance of the optimal objective value.

2 Practice with subgradients and prox operators [Dallas]

1. As we learned in class, subdifferentials collect all subgradients at each point in the domain of
a function, i.e. ∂f(x) = {g ∈ Rn : g is a subgradient of f at x}. In particular, it was given in
class that if f(x) = max

i=1,..,m
gi(x), where g1, .., gm are convex, then

∂f(x) = conv
(⋃

{∂gi(x) : gi(x) = f(x)}
)

i.e. the subdifferential is equal to the convex hull of the union of the subdifferentials of all the
given functions that are maximal for the given value of x.

(a) Prove that conv
(⋃
{∂gi(x) : gi(x) = f(x)}

)
⊆ ∂f(x)

(b) The L1 penalty can be written as f(x) = ‖x‖1 = max {sTx : si ∈ {−1,+1}}. Verify that
applying the above formula produces the correct subdifferential for f(x).

(c) Show that ∂λmax(Q) ⊇ conv
(
{uuT : uTQu = λmax(Q), ‖u‖2 = 1}

)
, for Q ∈ Sn

Note: the above is actually an equality, but you are only required to show one direction.

2. The proximal operator (proximal map) is defined as

proxh,t(x) = argmin
z

1

2
‖z − x‖22 + th(z)

which we can think of as minimizing h(z), while respecting a quadratic penalty on the distance
from z = x.

Derive the proximal map for each of the following functions:

(a) L2 norm: h(z) = ‖z‖2
(b) Elastic net penalty: h(z) = α‖z‖1 + (1− α)‖z‖22, 0 < α < 1

(c) h(z) = ‖z‖qq =
(∑p

i=1 |zi|q
)
, 0 < q < 1

3. The proximal minimization algorithm is:

x(k+1) = proxh,t(x
(k))

(a) Write out the proximal minimization algorithm applied to h(x) =
1

2
xTAx − bTx, where

A ∈ Sn

(b) Show that this is equivalent to the iterative refinement algorithm:

x(k+1) = x(k) + (A+ εI)−1(b−Ax(k))

where ε > 0 is a constant

(c) Assuming that proximal minimization converges to the minimizer of h(x), what would
the iterations of iterative refinement converge to? Why would this be useful in the case
of a rank deficient A?

2

Figure 1: Digit examples from the MNIST dataset

3 Proximal gradient for sparse logistic regression [Matt]

In this problem we employ proximal gradient methods to build a classifier for recognizing hand-
written digits from images. Instead of using the pixel values of the digit images directly, we have
generated random Fourier features for the classification task which allow us to learn a nonlinear
decision function with a linear classifier. We formulate the problem as multiclass classification with
output label y ∈ {0, . . . , 9} and input features x ∈ Rn. We model y|x with the probabilistic model

p(y = j − 1|x) =
exp(xTβj)∑10
k=1 exp (xTβk)

corresponding to a multinomial distribution and feature weights βj ∈ Rn for digit j − 1. Note that
we could also model the multinomial distribution over 10 classes with only 9 sets of parameters, but
using separate parameters for each class simplifies implementation.

We will learn the weights β1, . . . , β10 from training data by minimizing the negative log-likelihood
over m training examples

g(β1, . . . , β10) =

m∑
i=1

− log p(yi|xi;β1, . . . , β10)

=

m∑
i=1

(
log

10∑
k=1

exp
(
xTi βk

)
− xTi βyi

)

with the addition of `1-regularization. The final optimization problem is

min
β1,...,β10

f(β1, . . . , β10) = min
β1,...,β10

g(β1, . . . , β10) + λ

10∑
k=1

‖βk‖1.

The data for this problem is from the classic machine learning dataset MNIST. This dataset
has 60K training examples but in order to reduce computation time, we will use only 1K in this
problem. The training and test datasets with the features we will use are in mnist.mat and the
original images are in mnist original.mat, both available on the class website. (Note to R users:
to read Matlab files into R, you can use the package R.matlab on CRAN.)

(a) When implementing numerical methods, it is often convenient (and more efficient) to arrange

3

parameters in vectors and matrices rather than dealing with sums explicitly. Let

B =

 | |
β1 · · · β10
| |

 , X =

 xT1
...
xTm

and let Y ∈ Rm×10 be the “one-hot” encoding of the training labels: yik = 1 if example i has label
k − 1 and yik = 0 otherwise1. Show that the gradient of the smooth component of the objective is

∇Bg(B) = XT (Z exp(XB)− Y)

where exp(·) is applied elementwise and Z ∈ Rm×m is the diagonal matrix with

Zii =
1∑10

k=1 exp(xTi βk)
.

(b) Implement proximal gradient method with and without acceleration. Fit the model parameters
on the training data (X and y) using regularization parameter λ = 1. Run both algorithms for 5000
iterations with fixed step size t = 10−4. Plot the convergence of both methods in terms of f − f?
(provided as f star in mnist.mat) scaled logarithmically on the y-axis and number of iterations on
the x-axis.

(c) Next, we will evaluate how error rate decreases as a function of the regularization parameter λ.
For this part, we will run the accelerated proximal gradient method from part (b) for 1000 iterations.
Solve the problem with a sequence logarithmically-spaced values of λ from 101 to 10−2 and plot the
error rate measured on the test data (Xtest and ytest) as a function of λ. What value of λ achieves
the lowest error rate on the test data? How many nonzeros does the solution B? have for this value
of λ?

(d) Finally, using the best value of λ found in part (c) build a model and use it to make predictions on
the test set. Using these predictions, order the examples in the test set by the maximum probability
for a single class, i.e. by maxk=1,...,10 p(y = k − 1|x). Identify the 5 correctly classified examples
and the 5 incorrectly classified classified examples for which the maximum single class probability is
largest. Print these 10 images (the pixel data is in mnist original.mat, use imshow() or similar)
and include them in your report.

4 Stochastic proximal gradient [Hanzhang]

In this problem we extend the previous proximal gradient method with stochastic schemes.
When the loss function we minimize can be written in the form of

∑m
i=1 gi(β), where each gi(β)

is the loss at sample i, and the training time is long, then stochastic schemes should be considered.
In practice, this typically happens when data is too large to be loaded in memory, or is stored in
a distributed fashion. For this problem, you are going to implment stochastic proximal gradient
descent method for MNIST in the last problem.

In the last problem, the loss function has the form of
∑m
i=1 gi(β) +h(β), where gi is the negative

log-likelihood for sample i, and h is the convex `1-regularization. Then stochastic proximal gradient
method does the following in every epoch (cycle of the data).

• Randomly shuffle the data, and partition into a total of nbatch batches.

1In Matlab, Y = sparse(1:m, y+1, 1).

4

• For k = 1, 2, 3, . . . , nbatch, do

β ← prox
tk,h

(
β − tk

m

|Batchk|
∑

i∈Batchk

∇gi(β)

)

The key of the stochastic methods is to update the solution β for every sample. In practice, how-
ever, it is more computationally efficient to cycle through the samples in mini-batches than through
them individually due to issues like disk paging. In addition, one can reuse their implementation of
the batch version from the last problem. The stochastic gradient need to be scaled by a constant,
however, so that in expectation, it’s the same as the true gradient. In this problem, this constant is

m
|Batchk| for each batch.

For this problem, implement the mini-batch version of stochastic proximal gradient descent with
batch size of 100 (number of samples per batch), epoch number of 5000, tk = 10−5, and λ = 1.
Compute the training set objective after every epoch and plot the graph of number of epochs vesus
f − f∗, where y-axis is in logarithmic scale. Compare this plot with those of the two proximal
gradient descents from the last problem part (b).

Bonus question

The accelerated proximal gradient descent algorithm (with constant step size), as presented in Beck
and Teboulle (2008), is:

xk = proxt,h(vk − t∇g(vk)) (1)

a1 = 1 (2)

ak+1 =
1 +

√
1 + 4a2k
2

(3)

vk+1 = xk +

(
ak − 1

ak+1

)
(xk − xk−1) (4)

Show that this algorithm is approximately equivalent to the form present in the lecture slides.

5

