
Homework 4

Convex Optimization 10-725/36-725

Due Friday November 13 at 4:00pm
submitted to Mallory Deptola in GHC 8001
(Remember to submit each problem on a separate
sheet of paper, with your name on at the top)

1 Newton’s method [Dallas]

For the questions below, assume f is strongly convex with parameter m, ∇f is Lipschitz with
parameter M , and ∇2f is Lipschitz with parameter L.

1. Assume that we are in the quadratic convergence phase of Newton’s method (such that
‖∇f(x(k))‖2 ≤ η). Starting with ‖∇2f(x + t∆x) − ∇2f(x)‖2 ≤ tL‖∆x‖2 (which we can
obtain from the Lipschitz condition on ∇2f(x)), show that

f̃(t) ≤ f̃(0)− tλ(x)2 + t2
1

2
λ(x)2 + t3

L

6m3/2
λ(x)3

where f̃(t) = f(x+ t∆x).

You may use the following:

f̃ ′′(t) = ∆xT∇2f(x+ t∆x)∆x

f̃ ′(0) = −λ(x)2

f̃ ′′(0) = λ(x)2 ≥ m‖∆x‖22

2. Now take t = 1, and assume η ≤ 3(1− 2α)m2/L, and show that

f(x+ ∆x) ≤ f(x) + α∇f(x)T∆x

(i.e. a step size of t = 1 will always be accepted).

3. Still in the quadratic convergence phase, for η ≤ m2/L, and step size t = 1, we can show that

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

Use this to prove that

f(x(l))− f∗ ≤ 2m3

L2

(
1

2

)2l−k+1

for l > k, where k is the iteration at which we begin quadratic convergence.
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2 Iteratively reweighted least squares for logistic regression
[Dallas, but you can blame Ryan if this homework seems
long]

Consider binary logistic regression. We assume that yi ∼ Bernoulli(µi), independently, where

g(µi) = log

(
µi

1− µi

)
= xTi β,

for i = 1, . . . n. Thus p(yi = 1|xi) = E(yi) = g−1(xTi β). We can think of this as doing linear
regression of g(y) onto x, where the variance of y depends on x.

1. Write out the negative log likelihood (NLL) for the logistic regression problem with yi drawn
i.i.d. from a Bernoulli distribution with unknown parameter µi.

2. Write out the gradient and the Hessian of the NLL as functions of X, y and µ.

3. Write out the Newton update using the above gradient and Hessian. (You can assume a fixed
step size of 1).

4. Show that this takes the form of an weighted least-squares estimation problem.

5. Newton’s method in this context is known as Iteratively Reweighted Least Squares (IRLS).

Given X and y, write out a step-by-step algorithm to perform IRLS to estimate β̂.

As a side note, since each iteration of IRLS is a weighted linear regression problem, we can use
the weighted regression connection to compute useful quantities, such as standard errors. Many
software packages will use IRLS to solve logistic regression problems (e.g. glm() in R), and will
obtain standard errors from the final iteration.

3 Sparse eigenvectors via the barrier method [Matt]

In this problem we consider finding a sparse “eigenvector” of a matrix A � 0.

(a) Consider solving the optimization problem

max
x

xTAx

subject to ‖x‖2 = 1

‖x‖1 ≤ C.

Is this problem convex? Why or why not?

(b) Now, consider the semidefinite problem

max
X∈Sn

trAX

subject to X � 0

trX = 1∑
i,j

|Xij | ≤ C2.
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What is the relationship between this problem and the problem from part (a)? (Hint: what is the
relationship between x and X that makes the objectives of the two problems equal?)

(c) Form the logarithmic barrier for the constraint
∑
i,j |Xij | ≤ C2 and use this along with the

logarithmic barrier for X � 0 (φ(X) = log detX) to modify the problem in part (b) to have a
smooth objective and equality constraint.

(d) Setup and describe the iterations of the barrier method for the problem in part (c), explicitly
deriving the Newton update for X(k).

4 Barrier method for `1 SVM [Shashank]

In Question 4 of the previous assignment, we solved the standard SVMs using a QP solver. The
standard SVM solves the following optimization:

min
β,β0

n∑
i=1

[
1− yi

(
xTi β + β0

)]
+

+ λ‖β‖22

In this question, we will be solving variant of this for the same (newsgroup) data as you used
in the previous assignment. This version of the SVM also uses a hinge loss, but replaces the ridge
regularizer for the weight-vector with a `1 penalty:

min
β,β0

n∑
i=1

[
1− yi

(
xTi β + β0

)]
+

+ λ‖β‖1 (1)

1. Formulate the `1 SVM problem as a linear program. (Hint: you will need to introduce addi-
tional variables for this.)

2. Implement the barrier method to solve the LP you formulated in the last part, on the newsgroup
data (news.mat). You must use Newton’s method for the centering step (inner loops). Your
procedure for the barrier method should take as parameters the initial value of the barrier
parameter t0, the update factor µ for the barrier parameter, α and β for back-tracking in the
Newton step. Use λ = 0.25.

Here are some notes and suggestions for the barrier method implementation.

• The barrier method requires an initial strictly feasible point to start from. You can do
this by solving a very simple feasibility program, as discussed in the lecture. Note that
this feasibility program is indeed itself an LP; for this, you can either run the barrier
method until you have a feasible point, or simply solve the feasibility LP directly using
e.g., linprog() in MATLAB or the lpsolve() in R.

• Suggested parameter values for the log-barrier method: t0 = 5 , µ = 30.

• Suggested parameter values of Newton method backtracking: α = 0.1, β = 0.8.

• Log-barrier stopping threshold εouter = 10−6 (stop when duality gap m/t < εouter), and
inner iterations stopping tolerance: εinner = 10−6 (stop when relative change in barrier
objective is less than εouter).

(Hint: For the log-barrier method, you must ensure that all prospective iterates in the pro-
cedure are strictly feasible. Before computing the objective at any point in Newton method
during backtracking, check for feasibility. If a candidate point is infeasible, it means that the
current step-size would take you outside the feasible region, and must be shrunk until you are
in the feasible region.)
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3. What is the optimal value for the actual objective (not the log-barrier objective) that you get
from the barrier method? Show a plot of the actual objective value against cumulative number
of inner (Newton) iterations in your procedure.

4. For the optimal weight vector, what are the classification accuracies on the training set and
the test set? How does this compare to the performance of the standard SVM, from the last
homework?

5. How many support vectors in the training set does the optimal solution have?

6. How many nonzero components does the optimal weight vector have (considering weights with
absolute values below 10−6 to be zero)?

5 Primal-dual interior-point method for `1 SVM [Hanzhang]

In Question 3, you have derived an equivalent linear program for the `1 SVM problem, and solved it
using the barrier method. Here, we will solve `1 SVM with the primal-dual interior-point method.

1. Rewrite the `1 SVM problem as a standard form linear program. What is the relationship of
the soluion in this problem with β, the solution in the original `1 SVM problem?

2. Solve this standard form LP with a primal-dual interior-point method, and use this to compute
the solution in the original problem, β. Your final solution should contain your code, the
optimal value of the objective (of the standard form LP version of `1 SVM), the number of
the nonzero components in β, and the indices and values of the first 30 components that have
absolute value of greater than 0.01, not including the intercept β0.

Here are some suggestions and notes for the implementation of the primal-dual interior-point
method.

• Similar to the barrier method, you will need to find a strictly feasible initial solution.

• During backtracking line search for seeking update step size, it is important to check
feasibility. If the solution is no longer feasible then the step size is too large. Standard
form makes checking feasibility easy.

• A suggested value of the barrier parameter µ is 2.

• Since the feature matrix is sparse, you should use sparse representation of matrices in
your impementation to reduce to computational complexity.
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